
September 7, 2019 Green Draft Page 1 of 15

Green Information Extraction from Family Books
George Nagy, Professor Emeritus, RPI, 110 8th Street, Troy, NY 12180 USA nagy@ecse.rpi.edu

Abstract There is rising demand for the retrieval of genealogical information from semi-structured
books. Nuggets of personal interest are currently transcribed piecemeal by volunteers. GreenBook is an
effective alternative for recovering most of the desired information from any of the hundreds of
thousands of books of ancestral records that have already been scanned and digitized. It minimizes
human intervention by letting the user benefit from automatically compiled statistics from each book,
and lets computer search benefit from user insights. GreenBook combines enhanced template matching
with spreadsheet-based interaction for the rapid specification of the text to be extracted. The accuracy
and completeness of the extracted information is limited only by the user’s stamina. About three hours
of user interaction yielded 99% precision and 97% recall on books of Scottish birth and marriage records,
Ohio funeral home records, and family history spanning 300 years. The system is designed to facilitate
transition to new books.

1. INTRODUCTION

The preservation of information about one’s ancestors appears to be a common desire, perhaps even a
duty, in almost every culture. Until recently, family chronicles were recorded on conventional media.
Genealogical data is also available from census, court, voter roll, church, cemetery, funeral parlor and
military s service records, and DNA. Most of the printed information about family ancestry was compiled
from handwritten or typewritten material. Several hundred thousand digitized books contain family
records of parents, spouse(s) and children with the dates and places of their birth, marriage and death.
Extraction of these entities and relations generally relies on volunteers working from home. Since
extracting all information from a whole book is so time-consuming, volunteers usually extract and
contribute only details relevant to their own interests. Possibly disparate facts about any individual may
appear in several collections. The National Archives, FamilySearch and Ancestry.com, among other
organizations, integrate data from multiple sources to facilitate the construction of comprehensive
family trees.

The objective of this project is the development of interactive software that reduces the time required
to extract (almost) all useful information from a whole book to a few hours. GreenBook, a template-
matching program with a graphical user interface (GUI), was designed and implemented for this
purpose. The method was evaluated on three books: KBook: Kilbarchan Parish Record 1649-1772 from
Scotland [1]; MBook: Miller Funeral Home Records, 1917 – 1950 from Greenville, OH [2]; and EBook:
The Ely Ancestry ~1659-1900, mostly N-E USA [3].

The rest of the article is organized as follows. After listing our putative contributions, we review relevant
prior work. Section 3, Methodology, explains and illustrates each step of the process. Section 4 reports
the performance of GreenBook. Section 5 is presents our rationale for the choice of template matching
for the designated task. The Conclusion summarizes our results, points out where we came up short,
and mentions possible applications beyond genealogy.

George
Sticky Note
Green Information Extraction from Family Books

Cite this article as:

Nagy, G. SN COMPUT. SCI. (2020) 1: 23.

https://doi.org/10.1007/s42979-019-0024-x

September 7, 2019 Green Draft Page 2 of 15

1.1 Contributions

GreenBook is a viable solution to a problem that has long hampered the genealogical information-
extraction community. The GreenBook software consists of GreenEx.py, a python template-matching
program, and ClickEx, a spreadsheet-based graphical user interface that invokes GreenEx via the
Windows Command prompt. Noteworthy aspects of this package are:

1. GreenBook’s design minimizes and simplifies human labor while keeping the user in charge. Rapid
search promotes user reactions to whole-book results. GreenBook avoids frustratingly repetitive
intervention. After most of the useful information has been extracted by a dozen user-built templates,
GreenEx exploits the results to autonomously extract some missed text configurations.

2. Based on statistics collected by the program, GreenEx suggests to users the most relevant
unextracted text sequences for building additional templates. The context for proposed text snippets
and the number of snippets to be displayed are chosen by the user.

3. An extensible word-type tagger was constructed for quasi-repetitive non-sentential text that is
characteristic of family books and directories. The tagger is based on simple built-in python functions. It
is faster and more easily customized than previous taggers for family books based on character-level
regular expressions.

4. A multi-string template matching scheme was devised specifically for semi-structured text. The user
designates queries (i.e., search phrases) and the desired extracts from text pages or from proposed text
snippets. GreenEx adds query-specific data frames to extract variable configurations of tokens (for
instance person names with one or several given names and initials, or dates in different formats).
Separate windows with arbitrary offsets or overlaps between query and extract offer an improvement
over conventional single-window template matching.

5. We built a clickable graphic user interface instead of key entry for template construction. ClickEx
checks every user interaction and allows for immediate or delayed correction of errors. Help panels and
requests for confirmation provide guidance to inexperienced users.

This combination of design features is largely responsible for reducing the processing time for a 400-
page book from weeks to hours.

2. PRIOR WORK

We first trace progress on information extraction, then cite contributions directly relevant to our work.
Research on automated information retrieval (IR) was put on a firm footing by Salton [4]. Natural
Language Processing (NLP) and IR researchers’ sustained interest in Named Entity Recognition (NER) on
free-running text is exhibited by the enduring popularity of the NIST-sponsored Text REtrieval
Conference [5] and of the major supportive software web sites such as the Stanford CoreNLP NER site
[6]. In 1992, Searles and Taylor described a rule-based system created for address block extraction from
text strings [7], and soon thereafter wrappers were introduced to extract information from commercial
web sites [8]. Early researchers within the database, library/information science, document analysis, and
AI communities also applied their diverse toolkits to search semi-structured documents like dictionaries

September 7, 2019 Green Draft Page 3 of 15

[9] and library catalogs [10]. Surveys of the hundreds of ensuing contributions include [11, 12, 13] and
[14], which also evaluates and compares several dozen information extraction systems.

For the reader eager to explore the deep waters of ontology, we recommend [15], which presents a
thorough review of the most recent relevant research as well as some experiments on the same books
as we used. The authors describe a pipeline with form-based user-entry and seven extraction tools, for
possible integration into FamilySearch’s Family Tree [16]. They report “fully automatic extraction run[s]”
for KBook and MBook and for some pages of EBook. We will cite their results on Section 4. An
innovative proposed ontological application from the same BYU research team is deep data cleaning
[17].They demonstrate automated discovery of errors (like inconsistent dates) in sources of data—
including, among others, EBook.

Several earlier research endeavors relate to various aspects of the work presented here. We found
reports of recovering family information from OCR’d obituaries [18] and from lists abstracted from
family books [19]. Tagging with the well-known Stanford Named Entity Recognizer [20] yielded only
mediocre results because it was really designed for sentence analysis. We adopted forty-year old data
frames [21]. Our example-based approach for user interaction has some similarities with the end-user-
provided training examples used commercially for scanned business documents [22]. Some aspects of
our templates, like the use of literals and semantic tags, were anticipated in [23]. The effects of OCR
errors on information extraction were discussed in [24]. We reviewed recent trends in document
analysis in [25]. The rule-based extraction tool we present here is an example of the research called for
in [26], which points out that although most recent academic research on automated information
extraction relies on machine learning as the methodology of choice, in practice rule-based
methodologies dominate deployed information extraction systems.

Like other rule-based systems, ours exploits the quasi-repetitive format of factoids in semi-structured
text to generate and execute extraction rules. An early version of GreenEx was introduced at two
workshops [27,28]. The GreenBook sobriquet predates the admirable current movie. It is Green
because, like other “green” systems [29], its interactive feedback loop avoids wasting user energy.

3. METHODOLGY

Section 3.1 defines some common terms as used in this article, §3.2 illustrates the interaction between
user, ClickEx.xlsm and GreenEx.py, §3.3 describe ClickEx, §3.4 traces tagging, template matching and
conflict arbitration in GreenEx, §3.5 presents two routines for autonomous labeling, §3.6 explains the
compilation of the Family Records output, and §3.7 adds a few remarks about programming
considerations.

3.1 Definitions

Token: A string of alphanumeric symbols. E.g. Adam or , or 1762 (i.e., ‘Adam’, or ‘,’, or ‘1762’)
Token Sequence: A sequence of contiguous tokens. E.g. (Adam , James , and Jannet)
Tag: Element of a set of token types. E.g. CAP (capitalized) or NUM (numeric) or YEAR (year)
Literal: An alphanumeric string that serves as its own tag. E.g. (andand) or (bornborn) or (,,)
Alias: A pair of identically processed synonyms. E.g. (b; born) or (spouse; sp) or (Nov; November)
Tag Sequence: A sequence of contiguous tags. E.g. (Adam , James , and Jannet)  (CAP , CAP and Cap)

September 7, 2019 Green Draft Page 4 of 15

Sequence Number (SeqNo): A unique integer assigned to a token. E.g. Token(50) = Jannet; Tag(50) = CAP
Class: element of a set of labels for tokens. E.g. SPOUSE or CHILD or B_DATE or B_PLACE
Label: A Class assigned to a specific token. E.g. Label(50) = SPOUSE
Frame: A preset Tag Sequence. E.g. (NUM CAP , YEAR) for dates
Frame Set: A set of Frames associated with a Class. E.g. [B_DATE (NUM CAP , YEAR), (YEAR)]
Query: A Tag Sequence associated with a Class. E.g. [(born); B_DATE]
Extract: A Tag Sequence associated with a Query. E.g. [(born); B_DATE]  (NUM CAP , YEAR)
Template: A user-specified pair of Query and Extract. E.g. [(born); B_DATE, 1, (NUM CAP , YEAR)]
Template ID: A unique integer identifying a Query. E.g. ExNo([(born); B_DATE, 1, (NUM CAP , YEAR)]) = 4

3.2 User, ClickEx, GreenEx Interaction

The symbiotic relationship between a user and our software is illustrated in Fig. 1.

 User 

Initiates & ends session

Specifies

book file location
page numbers
data frames
literals
aliases
keys

Builds templates from

text page(s)
freq. tag sequences

Approves / disapproves

each template
output files

Deletes

incorrect templates
redundant templates

 ClickEx.xlsm 

Control buttons for

GreenEx functions

Entry fields for

literals
aliases
keys
page numbers
display parameters

Displays clickable

text page(s)
freq. tag sequences
class selection box
current templates

Displays immutable

help panels
error messages
confirmation requests
user log

GreenEx.py 

Imports

book text
text page(s)

Tokenizes & tags

book text
text page(s)
data frames
templates

Labels book text with

user-built templates
AutoQuery
AutoExtract

Proposes

frequent sequences

Compiles family record

groups tokens
lists relational tuples

 Output

family records file

tuples file

check file

program and user logs

evaluation file

report file

Figure 1. The User, ClickEx and GreenEx interact to generate the desired outputs.

Every session is likely to be different. GreenEx logs only the time and the number of clicks. The following
is a short yet plausible sequence of actions by the user and the programs:

1. User opens a fresh copy of ClickEx in Excel.
2. enters file location of KBook text in ClickEx
3. specifies some book-specific literals and aliases and approves default display parameters
4. asks ClickEx to display Page 4 text for building templates
5. ClickEx requests GreenEx to locate and import Page 4 text

September 7, 2019 Green Draft Page 5 of 15

6. GreenEx tokenizes Page 4 text and passes it to ClickEx for display
7. User builds and approves templates for HEAD, SPOUSE, M_DATE, M_PLACE, CHILD, B_DATE
8. commands ClickEx to generate Output files
9. ClickEx passes the request and the current templates to GreenEx
10. GreenEx tokenizes and tags the book text and the current templates
11. sweeps the templates against the book text and finds all matches in the book text
12. labels the book text, groups same-class tokens, and generates output files
13. User inspects the Check File and requests frequent tag sequences (FTSs) for Key “twin”
14. GreenEx complies and passes the FTSs including the token “twin” to ClickEx for display

 (KBook reports 49 sets of twins, but none on Page 4)
15. User builds templates for TWIN1 and TWIN2 and requests new output
16. inspects the Family Record file, is satisfied, and presses SAVE & EXIT button on ClickEx
17. ClickEx saves page text, frequent tag sequences, templates and log, then exits Excel.

3.3 ClickEx Graphic User Interface

The ClickEx GUI provides a means of rapid and accurate templates construction and full control of every
step in the information extraction procedure. The ClickEx dashboard is shown in Fig. 2. It lets the user
request a new page to be loaded into the Edit Sheet for template generation, build templates using the
Edit Sheet (Fig. 3), delete a templates via the Selection Sheet (Fig. 4), write selected output files, quit
and later resume the session, invoke a Help file, or start work on a new book. Except for entering LIT and
ALIAS tokens, and page numbers, all user interaction is point-and-click.

Fig. 2 ClickEx Dashboard. Used to enter initial parameters and select the next action. Import
Text would load page 575 (under Book Specs). Write Result Files gives the user the option of
writing out any or all output files. The gray cells are used internally by ClickEx.

Start Search HEAD:
End Search SPOUSE: Time (m) Entries Time Entries
Start Extract CHILD: 0.0 0 30.7 25
End Extract B_DATE: Session # Date Name

C_DATE: 6 5/3/2019 George
D_DATE: StartTime NowTime
BU_DATE: 1059.2 1059.2

M_DATE:

B_PLACE: Nucleus 1 3 Pre/PostTa -6 0

D_PLACE: Exdist= 7

M_PLACE:

PARENT1: WRITEPAGET 0 1

PARENT2: WRITEOUTFIL 0

TWIN1: WRITECHECK 0
TWIN2: WRITEEXFILE 0

Book Directory: WRITEREPOR 0
C:\Users\George\Documents\gndocs\COLLEAGUES\EMBLEY\FAMILY BOOKS\Book_Ely AutoExtract 0
Template Specs: 0

HEAD HEAD: C:\\Users\\George\\Documents\\g Book Specs:
FirstPage= 112

LIT 2nd LastPage= 700
LIT 3rd SkipTop= 2
LIT natural SkipTop= 0
LIT adultery PageText 575

This session Past Sessions
Log:

SAVE
& EXIT

Build
Templates

New
Book

Propose
New FTSs

Write
Result
Files

Import
Text

HELP Delete a
Template

September 7, 2019 Green Draft Page 6 of 15

The class of a new template is selected from a pop-up CLASS box similar to the gray box at the top of the
dashboard. Then a query and extract are selected by clicking on their first and last tokens in the text on
the Edit Sheet (Fig. 3). The user can abandon a partially constructed template after each click, and is
requested to confirm (or reject) the specified class, query and extract before being asked whether to
continue building templates or return to the dashboard.

Fig. 3 Edit sheet. Pop-up boxes (not shown) let the user pick the class, query and extract for new
templates without leaving this sheet. The red box indicates a deleted template. Start/end clicks
turn the start or end of the insert blue, and the start or end of the extract pink.

Fig. 4.Selection sheet. The second column points to the location of the template on the Edit
sheet. The next columns list the class, query and extract for each template. Clicking on any cell
in a row disables that template by changing its ID to 0 and painting it red.

A dozen templates constructed from a page or two usually suffice to let GreenEx classify over 70% of the
tokens. It is, however, nearly impossible for the user to guess where to find useful but less frequent
token strings. This is where GreenEx really earns its keep. When the user clicks on Propose New FTSs
(Frequent Tag Sequences), the program searches the text for the most frequent tag sequences
surrounding one or more user-specified KEY words. The new FTSs are appended to the Edit Sheet

Edit

FirstInFile_4_8_2019_14h41m.csv
SeqNo Page Line Offset CLASS Text Line...

PAGETEXT 427 5 1 0 HEAD: SOL Adame , Robert , par . , and Issobell Adame , par . of LochwinnoEOL
PAGETEXT 444 5 2 0 M_DATE: SOL , in Pennell 1679 m - 2I Mar ' 678 EOL
PAGETEXT 456 5 3 0 CHILD: SOL A daughter , 30 Mar 1679 . EOL
PAGETEXT 465 5 4 0 CLASS SOL Adam , William , par . , and Elizabeth Alexander , par . of Paisley EOL
PAGETEXT 482 5 5 0 M_DATE: SOL m . Paisley , 15 May 1650 EOL
PAGETEXT 491 5 6 0 M_PLACE: SOL Adamson , Alexander , in Kilbarchan , and Mary Aitken p . 12 Feb 1763 EOL
PAGETEXT 508 5 7 0 CLASS SOL Mary , born 16 Oct 1763 . EOL
PAGETEXT 517 5 8 0 CHILD: SOL David , born 1 May 1765 . EOL
PAGETEXT 526 5 9 0 SPOUSE: SOL Aird , William , and Margaret Aitken , in AuchincloigEOL
PAGETEXT 538 5 10 0 CHILD: SOL Margaret , 9 Feb 1707 . EOL
PAGETEXT 546 5 11 0 HEAD: SOL Aitken (Akin) , and Elspa Orr m . 18 Dec 1693 EOL
PAGETEXT 561 5 12 0 CLASS SOL Aitken , Allan , and Mary Aitken EOL
PAGETEXT 570 5 13 0 C_DATE: SOL Agnes , 10 May 1741 . EOL
PAGETEXT 578 5 14 0 CLASS SOL Aiken , David , and Janet Stevenson m . 29 Sept 1691 EOL
PAGETEXT 592 5 15 0 CLASS SOL Aitkine , Thomas , and Geills Ore m . 21 Dec 1661 EOL
PAGETEXT 606 5 16 0 HEAD: SOL W. Richard Allasone and Ninian Aitkine . EOL
PAGETEXT 615 5 17 0 M_DATE: SOL Aikine , James , and Jean Allason , in Ramferlie , 1696 in Kaimhill EOL
PAGETEXT 631 5 18 0 CLASS SOL m . 23 Jan 1679 EOL
PAGETEXT 638 5 19 0 CHILD: SOL John , 28 Nov 1679 . EOL

Select
ions

Edit
ClassCell

Class Search Phrase Extract

2 F5 B_DATE: b 1817
3 F6 PARENT2: and Jane Clark
4 F7 CHILD: SOL 1 Thomas Ely
5 F11 HEAD: SOL 243327 Rev Ben
0 F15 PARENT1: dau Porter Moore
7 F19 D_DATE: d 1877
8 F14 SPOUSE: m . 2nd Abbie Amelia
0 F14 BU_DATE: m . 2nd 1873

10 F26 SPOUSE: m Beale Steenberger
11 F12 SPOUSE: m Elizabeth Eudora

0 F12 M_DATE: m 1848
13 F14 M_DATE: m . 2nd 1873
14 F31 HEAD: 243322 . Zebulon Zebulon DeForest
15 F48 SPOUSE: m Catharine Hayes

0 F50 M_DATE: m Apr 13 , 1817
17 F50 SPOUSE: m . Apr 13 , 1817 Harriet

September 7, 2019 Green Draft Page 7 of 15

(sorted by frequency and surrounded by a dashboard-specified number of “context” tokens). The top N
candidates (N is also a dashboard choice) are displayed in the same format as page text, ready for the
construction of additional templates. For example, given the KEY “&”, GreenBook proposes:
…PARENT2: married farmer EOL SOL sp & informant ANNA MINNICH….The user
may then build a SPOUSE template with query sp & informant and extract ANNA MINNICH.
Here only the assigned class is shown for already classified tokens (like PARENT2).

At the first session, the user is asked to enter a given name. Henceforth the program keeps track of the
duration and number of sessions and interactions. The user may quit at any time and resume later by re-
opening the same ClickEx.xlsm workbook.

3.4 Template matching with GreenEx

The successive transformations from a raw text line to the Family Records output require the following
steps:

1. Tokenize the entire book text and assign a sequence number to each token.
2. Tag each token to reveal structural similarity.
3. Expand each template extract with the appropriate class-specific data frames.
4. Locate every tag sequence in the book text that matches any template’s query and extract.
5. Arbitrate overlapping matches according to match length and sequence number.
6. Assign a class label to each matched token according to the class of the matching extract
7. Group same class tokens (like multi-token person or place names or dates).
8. Assemble class groups into family records behind HEAD tokens.
9. Optionally, create relations tuples, like (CHILD–B_DATE: David1 May 1765), from family records.

The effect of each step (except #9) on a single line of text is illustrated in Figure 5.

(a) page 4 line 9 first SeqNo 83
(b) Adam, James, in Kilbarchan, and Jane Lyle p. 2 Aug 1746
(c) SOL Adam , James , in Kilbarchan , and Jane Lyle p . 2 Aug 1746 EOL
(d)SOL CAP , CAP , in CAP , and CAP CAP m . NUM MONTH YEAR EOL
(e) SOL HEAD HEAD HEAD NONE NONE NONE NONE NONE SPOUSE SPOUSE NONE NONE M_DATE M_DATE M_DATE EOL

(f) SOL T1 T1 T1 none none none none none T4 T4 none none T5 T5 T5 EOL
(g) HEAD:,4,10,2,3,Adam,",",James,SPOUSE:,4,10,10,2,Jane,Lyle,M_DATE:,4,10,14,3,2,Aug,1746, …
Fig. 5 (a) Book coordinates of first token; (b) Text line; (c) Tokenized text line; (d) Tagged text line, with
m (married) substituted for alias p (proclaimed); (e) Labeled text line; (f) Template IDs; (g) Beginning of
Family Record with offsets and lengths of class-groups. Children on lines below are not shown.

Fig. 6 lists the tags. We use about a dozen generic tags, like NUMeric, CAPitalized, ACAP (all upper case),
YEAR, MONTH, PROG(eny) for son, sons, dau, daughter, and NUM6 (larger numbers used as an index in
EBook), plus LITs (literals). Most LITs are token strings that are used as queries: b for born, d for died,
m for married in KBook or for mother in MBook, BD for burial date. LITs can be declared by the user or
designated programmatically based on their high frequency.

ALIASes are synonyms such as (bornb), (diedd), (marriedm), in Ebook and (Cem, cem,
cemeteryCemetery) in MBook. A token aliased by the user to a LIT is tagged as that LIT.

September 7, 2019 Green Draft Page 8 of 15

[CAP ACAP YEAR MONTH NUM NUM6 PNUM PREP PUNCT yyy SOL EOL] + LITs
Fig. 6 List of Tags. PROG(eny), MONTH, PUNCT(uation), and PREP(ositions) are specified by lists. The
default tag yyy is assigned to any lower-case token that is not a LIT or aliased to an upper-case token.

The user need not know the tagging scheme. Although templates appear to the user as text, the
program tags each query and extract. The natural language tokens are used only for user displays. The
template matching is based entirely on the class-specific query and extract tag sequences.

GreenEx compiles a class list from the matched templates. Fig. 7 list in alphabetic order the classes
selected by a user for KBook. Only the HEAD class, which serves to group family records, is mandatory.

B_DATE:, CHILD:, C_DATE:, HEAD:, M_DATE:, M_PLACE:, SPOUSE:, TWIN1:, TWIN2:
Fig. 7 Class Names for KBook. Short names keep the class selection box that pops up on the Edit
Worksheet in ClickEx to a manageable size.

A particular token may be classified by several templates and data frames, associated with the same or
different classes and queries. The final class assignment to a token gives first priority to the longest
query, and second priority to the longest matching extract of the longest query. Extracts can bridge text
lines and even page breaks. Tokens that remain unclassified are assigned the NONE label. EOLs and SOLs
retain their designations.

A useful diagnostic output of GreenEx is the Check File. For each text line of the book, the Check File
reports the tokens, tags, matching labels and template_IDs corresponding to lines (a), (c), (d), (e) and (f)
of Fig. 5. This unicode file is typically over 1 MB, but can be easily searched with any editor.

3.5 AutoQuery and AutoExtract

After template matching, the user may invoke two routines to augment the number of classified tokens.
AutoQuery creates augmented tag sequences by surrounding each classified tag and each NONE tag by a
specified number of pre-tags and post-tags. We used [-2,6] for all experiments, which adds two tags
before and six tags after the selected tag. These values were chosen by trials on two validation pages.

AutoQuery ranks all the data frames according to their match frequency with the augmented tag
sequences. High-frequency data frames that match tokens unambiguously (i.e., if only frames belonging
to the same class match the target sequence) become candidate classifiers for the NONE tags with
priority based on match frequency and frame length. The pre- and post-tags therefore serve as virtual
queries. In the Check File, Auto-Query class assignments are listed with the source query Template_ID
prefixed by “Auto_”.

As an example, in a KBook line "SOL Archibald , bom 19 May 1758 . EOL", 1758 was not classified by the
original query because of the OCR error “bom” for “born”. AutoQuery classified it correctly because
YEAR classified as B-DATE was often found with pre-tags NUM, MONTH and post-tag EOL SOL CAP
, b NUM (with the last five post-tags in the next line).

As a further precaution against wrong class assignments, after the first pass with only user templates
AutoQuery makes a list of Person Names and Class Names. It does not assign a Person or Place class to a

September 7, 2019 Green Draft Page 9 of 15

token unless the name had at least θN occurrences assigned by user-templates. This is consonant with
our policy of tolerating several rejects to avoid a single classification error.

AutoExtract is based on a similar idea, except that instead of matching frame sequences in context, it
matches individual tags surrounded by contextual tags.

3.6 Grouping and Family Records

When every token has been assigned a Class or NONE label and the user calls for generating output,
GreenEx collects contiguous tokens with the same Class label into Class Groups. The sequence (1 May
1765), with all three tokens labeled B_DATE, would become a Class Group. Class groups, like extracts,
can bridge text lines and pages.

In the final step, each class group is assigned to the Family of the immediately preceding HEAD. In this
work, family is the highest level of agglomeration. The family assignments complete the information
extraction stage. The Family Record, Check, Report, and Evaluation files, all in comma-separated (.csv
or .txt) format, can now be written out. Fig 5 (g) shows part of a Family Record.

As already mentioned, GreenEx can also produce a list of relations, similar to Resource Definition
Framework (RDF) tuples, for populating a databased or an ontology. For example, a Parent-Child tuple
would consist of the names of a Parent and a Child. The associations are based on the expected order of
the items. Birth and death dates and places usually follow the name of the subject. Parent-Child orders
vary: in KBook the parents are listed first, whereas in MBook the HEAD’s parents’ names follow the
name of the HEAD, and the HEAD’s children are listed after he HEAD’s parents.

The tuple files are much larger than the family record files because each class-group appears only once
in the family record, but it can appear several times in the tuples file. A CHILD group, for example, could
belong to PARENT1-CHILD, PARENT2 -CHILD, CHILD-B_DAY, and CHILD-B_PLACE tuples.

The Report File is simply the redirected GreenEx screen print (with the level of detail under user
control). It echoes all file names, input parameters, and the many statistics accumulated by the
program. This file also serves to preserve the provenance of the experimental results.

3.7 Data Structures and Coding Issues

Our platform is a 2.4 GHz Dell Optiplex 7010 with 8GB RAM running Python 3.6 under Windows 7.0.
Pervasive use of python’s prodigious dictionary structure accounts for GreenEx’s speed. Dictionaries
translate sequence numbers to page-book-offset coordinates, and tag and class strings to integer
identifiers. Dictionaries also keep track of class, tag, template and frame frequencies, data-frame to
template associations, and provide quick access to classified tokens with matching frames as well as to
unclassified tokens with frames that match only the surrounding context tokens.

The ClickEx procedure includes two dozen VBA modules. The most complex are those that map Start and
End Query and Extract cells clicked on the Edit worksheet to internal template formats.

GreenEx.py and ClickEx.xlsm each contain about 2000 lines of code. The python 3.6 and Excel-VBA code,
text input data, ground truth, and voluminous output files are freely available on the TANGO website
[30] for replication and improvement by other researchers. The three books are in the public domain.

September 7, 2019 Green Draft Page 10 of 15

4. EXPERIMENTAL RESULTS

We chose books that were part of pilot experiments on ontology construction conducted by the
Brigham Young University team of a long-term collaborator [15]. The sizes of the three processed book
text files and of the data sets used for training, evaluation and test, are reported in §4.1. The
contributions to Precision and Recall of the user templates, data frames, AutoQuery and AutoExtract are
tabulated in §4.2 for the dozen pages for which we have ground truth. In §4.3 we provide what
comparison we can with results achieved by others.

4.1 Data

Table 1 shows the sizes of our data sets in terms of pages and tokens. The proportion of training and
text tokens labeled in the ground truth (i.e., “useful” tokens) is about 52% in KBook, 41% in MBook, but
only 21% in EBook. The fraction of useful tokens is one measure of structure. According to this measure,
EBook is least structured. It contains, interspersed among crisp lists of factoids, narrative paragraphs
about the protagonists, distinguished civilian and military careers, and potential sources of additional
information. Because these items are only of marginal use in genealogy, they are not extracted.

Table 1 Data Sets, Ground Truth, and assigned class labels

 Fig. 8 Snippets from the three books
 from the searchable OCR PDF output.

Fig. 8 shows portions from the PDF file of each book. The unicode txt files (e.g. Fig. 5 b) that we used lack
most of the formatting (indentations, type sizes and styles) of the original OCR output. Using such
information would require book-specific layout rules.

Although the print quality of the three books is fair, the OCR accuracy is below what can be expected
from current products. Many of the errors are standard: rn for m, bom for born, Gem for Cem,
Lavvis for Lawis, j for J, I or | for 1, and period/comma confusions. There are, however,
some anomalies, including 223 instances of i860 instead of 1860 in EBook. These cannot be
explained by the shape of the “1”, because there are less than a dozen OCR errors among the thousands
of other dates. We have not yet been able to trace when and where these books were OCR’d.

Book Data Set Pages Tokens
GT Class

labels
GreenEx

Class labels
EBook training 575

validation 576,577
test 610-613 2384 645
all 112-700 279065 58054

KBook training 5
validation 4,6
test 50-53 2401 1032
all 4-127 60731 31532

MBook training 7
validation 8,9
test 90-93 2704 1106
all 7-395 223830 98147

1663 456

1625 695

2056 809

September 7, 2019 Green Draft Page 11 of 15

4.2 Evaluation

Table 2 supports the following observations. For these three books, the average fraction of GreenEx
labeled tokens is about 40% (194924 / 563626). This corresponds roughly to the proportion of useful
tokens estimated from the GT. So most of the factoids were labeled by GreenBook. User-built templates
are directly responsible for about three-quarters of these labels (164143 / 194924). Most of the
remaining labels are contributed by the data frames. AutoQuery and AutoExtract labeled about 4%.
Class groups contain, on average, two tokens. There are almost 10 class groups per family. The longest
family records appear in Ely, which reports the family head’s and spouse’s parents and sometimes the
children’s spouses and their parents as well. The runtime is roughly proportional to the product of the
number of templates and the number of book tokens. Table 3 shows the class-by-class classification
results for MBook.

Table 2 Templates, Data frames, AutoQuery and AutoExtract performance

How accurate is GreenBook? GreenEx classifies every token in each book from start-page to end-page.
Comparison of the output labels with a Ground Truth File (GT) generates an ERROR File (Fig. 9) for
computing performance statistics. “NONE” in the GreenEx output is the default class for unlabeled
tokens in the GT (marked as “?”). Each ERROR file includes a summary table with class-by-class counts of
the possible outcomes. The experiments below generated 15 ERROR files.

When the wrong class is assigned to a GT-labeled token, or any class other than NONE is assigned to a
token unlabeled in the GT, it is counted as an error or false positive. NONE assigned to a token with a
class label given in the GT is a reject or false negative. When the correct class is assigned, or NONE is
assigned to an unlabeled token, it is deemed correct or true positive. (We also evaluated accuracy using
only class-labeled tokens in the GT. There was little difference because almost all unlabeled tokens were
rejected. The “error” and “reject” categories are useful for characterizing multi-category performance.)
For this application, we set parameters to trade off an error for several rejects.

Table 4 shows the Precision and Recall on the training and test sets, with and without data frames,
AutoQuery and AutoExtract. The error counts are obtained from the corresponding ERROR files. The
F-measure on the test sets with all the modules ranges from F= 0.966 to F=0.988. The subscripts indicate
unreliable estimates due to sample size. Missed HEADs may have significant consequences: the spouse
or child of a missed HEAD could be assigned to the family of the previous HEAD! The only missing Head
in the test sets was a family name without any given name that was labeled as CHILD.

We were unable to conduct human-factors experiments that would need far more ground truth, and
subjects with diverse backgrounds. We found that time-consuming correction of our mistakes decreased

Book
Processed

tokens
Templates

Labeled
by user

templates

Labeled by
user

templates +
data frames

Labeled
by Auto
Query

Labeled
by Auto
Extract

Total
labeled
tokens

Class
Groups

Family
Records

RunTime
seconds

EBook 279065 18 45228 58054 927 962 59943 34176 1763 22.17
KB00k 60731 19 31070 31532 358 196 32086 14249 2677 10.22
Mbook 223830 23 87845 98147 796 3952 102895 38788 4782 35.41
Total 563626 60 164143 187733 2081 5110 194924 87213 9222 67.8

September 7, 2019 Green Draft Page 12 of 15

rapidly with experience. After 3-4 hours of practice, template construction by the author plateaued at
about one minute per template. We processed all three books in 220 minutes.

Like everybody else, we blame most of our program’s mistakes on flaws in the input data. Many
misclassifications are actually due to OCR errors. The OCR segments 1753 as 175 3, 1769 as
1 769, and Margaret as M ’ argaret. In KBook, OCR miss-segmentation accounted for 9 of the 14
rejects and 1 error. In Ely, the first child is often rejected because of a misrecognized numeral 1. Since
most of these OCR defects would not stump even a poor human reader, we should be able to keep them
from confusing GreenBook otherwise than by building a template for each defect or waiting for the
perfect OCR. We believe that we could eliminate about a quarter of the current non-OCR rejects by
optimizing various user-settable parameters separately for each book. We could also improve tagging to
avoid, for example, children named April, May, June or August from being tagged as MONTH.

Fig. 9 Excerpt from KBook ERROR file. The second line is the class assigned by GreenEx, the
third is the ground truth (? means that the token is not a potential extract), and the fourth is the
result of the comparison: CC (correct), EE (error), RR (reject), ---.(correct, default class).

Table 3 MBook Classification

Table 4 Precision and Recall

4.3 Comparison with Other Work

The only publications that we found about information extraction from entire family books are from BYU
and FamilySearch. They report an experiment with OntoES/FROntIER which extracted information on
8539 individuals from KBook with 25 hand-coded regular expressions [15]. Based on a check of several
randomly chosen pages the F-score “was judged to be near 95%”. The same result is reported a few
pages later with the complete pipeline.

page 4 line 29 first SeqNo 274
SOL Adam , John , and Jean Reid EOL
SOL HEAD: HEAD: HEAD: NONE NONE SPOUSE: SPOUSE: EOL
SOL HEAD: HEAD: HEAD: ? ? SPOUSE: SPOUSE: EOL
--- CC CC CC --- --- CC CC ---

page 4 line 30 first SeqNo 283
SOL John , 14 Nov 1673 . EOL
SOL CHILD: NONE C_DATE: C_DATE: C_DATE: NONE EOL
SOL CHILD: ? C_DATE: C_DATE: C_DATE: ? EOL
--- CC --- CC CC CC --- ---

Groups
Class Template-

labeled
Auto
Inseert

Auto
Extract

BU_DATE: 3651 9809 261 604
BU_PLACE 4106 9500 7 51
B_DATE: 2922 8677 9 26
B_PLACE: 3606 10542 6 76
CHILD: 10148 15651 1429 3418
D_DATE: 4302 12644 56 34
D_PLACE: 4787 11195 7 1115
HEAD: 4261 15638 17 49
PARENT1: 2934 6290 22 60
PARENT2: 2656 5691 12 47
SPOUSE: 2124 3956 129 232
Total 45497 109593 1955 5712

Tokens

September 7, 2019 Green Draft Page 13 of 15

Under pipeline runs in [15] there is also a report of a complete automated run on MBook that extracted
12,226 “individuals.” No F-score is given here. We are not sure exactly what was extracted and do not
believe that our 22123 MBook “person” extracts (as in Table 3) are comparable. The first stage of recent
experiments reported by the BYU team used GreenQQ, an early version of GreenEx without ClickEx,
AutoQuery, AutoExtract or data frames, instead of their FROntIER regex approach [31]. Only final
pipeline results are reported in detail.

5. RATIONALE FOR CHOICE OF METHOD

GreenBook’s components are conventional: only their combination is new. We did not start with a
solution in search of a problem but because even with many acolytes, cutting and pasting from family
books was obstructing progress on a large project [15]. Why do we propose a dowdy methodology
instead of resorting to modern machine learning techniques with a record of excellent results on
character, speech and face recognition? Because in our experience with neural networks and statistical
classifiers, every data set from a new source required so much joyless covert effort (“tuning”) for
respectable results. And even with canned feature extraction and classification software, there is no way
to avoid laborious labeling of possibly inappropriate training data.

Machine-learning experiments seldom track user time. Is it considered expendable? Researchers seldom
report the number of runs and adjustments (hopefully only on the training and validation sets) before
their (single?) run on the test set. In contrast, GreenBook interaction is out of the closet. The user
interacts openly with ClickEx. We understand that most new books will require some adjustments (we
had to introduce a new tag, NUM6, for EBook’s identifiers), but believe that our model-based approach
promotes more predictable and understandable, less data-intensive, and quicker extension to new input
than would machine learning.

Without interaction, one is stuck with the best results obtained with the available engine and training
data. Active and semi-supervised learning cannot yet take full advantage of user insight. Post- correction
does not improve the engine. The same errors must be corrected again and again.

Precision and recall criteria must be ultimately based on the (estimated) downstream cost of failures
relative to extraction cost. With any available method, for the task at hand computer cost is negligible
compared to human time. Human-friendly built-in interaction based on transparent template-matching
output provides a significant multiplier of human annotation with a guarantees that any performance
criterion can be reached. That is why we believe that GreenBook is a step in the right direction.

6. CONCLUSION

Over 360,000 digitized and OCR’d family books have been collected by FamilySearch alone [17].
Applications of GreenBook other than to historical documents are unlikely. Why would anyone today
record important facts anywhere but in a Cloud? We do, however, want to extract information from
some other semi-structured documents before they all get recycled. We have already began collecting
OCR’d city directories and sales catalogs (dictionaries and gazetteers are too easy: they have all been
already converted to “digital resources”). We also have some interest in automating the harvesting of
semi-structured documents from the web, and are therefore experimenting with some quantitative
measures of document structure. We are relieved to see that Moby Dick, Tale of Two Cities and Brave
New World score lower on these measures than our family books.

September 7, 2019 Green Draft Page 14 of 15

Another task awaiting attention is verification of our conjecture that GreenBook is essentially script and
language independent – at least for Latin- and Greek-based scripts and languages. Chinese Zupu (or
Jiapu) family records are seldom printed, but many are well within the scope of current Chinese OCR.
Many families in India also kept family records that could provide an appealing application.

The major shortcomings of the current edition of GreenBook are the inflexible displacement between
query and extract and vulnerability to OCR errors. We must replace our tie-rod coupling between query
and extract by an elastic shock cord, and introduce some context-sensitive edit distance into tagging and
matching to allow for misrecognized characters.

Although GreenBook can help a user to extract all relevant information in a book, it is a long-tailed
process. While on these books 99% precision and 95% recall are achievable in a few hours, 99.8%
precision and 98% recall could take the same operator several days. It is even possible that keyboarding
an entire book would be faster than extracting everything using GreenBook.

We are happy to be able to report low error rates for sample pages from the three books, and are not
unduly concerned about missing some birth and marriage places. For one thing, many of these are
missing in all three books. For another, genealogical information extraction has something in common
with picking blueberries: it is not essential to collect every berry from each bush. For the record, the
weighted average Precision/Recall F-measure for the three books (Table 4), a target for future research,
is 0.983.

ACKNOWLEGMENT

My friendship and collaboration with Professor (now Emeritus) David W. Embley of Brigham Young
University dates back so many decades that I can no longer tell which ideas were his and which were
mine. This work would not have been possible without his and his team’s essential contributions.

Conflict of Interest: The author declared that he has no conflict of interest

REFERENCES

[1] F.J. Grant (editor), Index to The Register of Marriages and Baptisms in the PARISH OF KILBARCHAN, 1649 –1772.
J. Skinner & Company, LTD, Edinburgh, Scotland, 1912.

[2] Miller Funeral Home Records, 1917 – 1950, Greenville, Ohio 1990)
[3] The Ely Ancestry (Vanderpoel 1902),
[4] G. Salton, Automatic Information Organization and Retrieval, McGrawHill 1968.
[5] Text Retrieval Conference (TREC), http://trec.nist.gov.
[6] Stanford Named Entity Recognizer (NER), https://nlp.stanford.edu/software/CRF-NER.shtml.
[7] D.B. Searls and S.L. Taylor, Document Image Analysis Using Logic-Grammar-Based Syntactic Pattern

Recognition, in Structured Document Analysis, H.S. Baird, H. Bunke, K. Yamamoto (Eds.), Springer Verlag, 1992,
520-545.

[8] N. Kushmerick, D.S. Weld, and R. Doorenbos, Wrapper Induction for Information Extraction, Proceedings of the
1997 International Joint Conference on Artificial Intelligence, 1997, 729–735.

[9] D.J. Ittner and H.S. Baird, Programmable Document Analysis, Proceedings of the First IAPR International
Workshop on Document Analysis Systems, DAS’94, A.L. Spitz and A. Dengel (Eds), World Scientific 1995, 76-93.

September 7, 2019 Green Draft Page 15 of 15

[10] A. Belaïd and Y. Chenvoy, Document Analysis for Retrospective Conversion of Library Reference Catalogues,

Proc. ICDAR’97, Ulm, Germany, 1997.
[11] J. Turmo, A. Ageno, and N. Català, Adaptive Information Extraction, ACM Computing Surveys, 38:2, 2006.
[12] S. Sarawagi, Information Extraction, in Foundations and Trends in Databases, 1:3, 2008, 261–377.
[13] R. Grishman, Information Extraction, IEEE Intelligent Systems, 30, Sept.-Oct., 2015, 8–15.
[14] P. Jiménez, R. Corchuelo, and H.A. Sleiman, ARIEX: Automated Ranking of Information Extractors, Knowledge-

Bas d Systems, 93:2, 2016, 84–108.
[15] D. W. Embley, S. W. Liddle, D. W. Lonsdale, S. N. Woodfield, Ontological Document Reading, An Experience

Report, International Journal of Conceptual Modeling, pp. 133-181,February 2018.
[]16] D. W. Embley, S. W. Liddle, S. Eastmond, D.W. Lonsdale, S. N Woodfield, Conceptual Modeling in Accelerating

Information Ingest into Family Tree. In: Cabot J., Gómez C., Pastor O., Sancho M. (eds.) Conceptual Modeling
Perspectives. Springer, Cham, Switzerland, 2017, pp. 69–84

[17] S.N. Woodfield, S. Seeger, S. Litster, S.W. Liddle1, B. Grace, and D.W. Embley; Ontological Deep Data Cleaning:
37th International Conference, ER 2018, Xi'an, China, Proceedings. 10.1007/978-3-030-00847-5_9.

[18] P. Schone and J. Gehring, Genealogical Indexing of Obituaries Using Automatic Processes, Proceedings of the
Family History Technical Workshop (FHTW’16), Provo, Utah, USA, February, 2016
https://fhtw.byu.edu/archive/2016).

[19] T.L. Packer and D.W. Embley, Unsupervised Training of HMM Structure and Parameters for OCRed List
Recognition and Ontology Population, Proceedings of the 3rd International Workshop on Historical Document
Imaging and Processing, Nancy, France, 22 August 2015, 23–30.

[20] J. Rose Finkel, T. Grenager, and C. Manning. 2005. Incorporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. Proceedings of the 43nd Annual Meeting of the Association for
Computational Linguistics (ACL 2005), pp. 363-370.

[21] D.W. Embley, (1980) Programming With Data Frames for Everyday Data Items. In: Proceedings of the 1980
National Computer Conference. Anaheim, California, pp. 301–305

[22] D. Schuster et al., Intellix -- End-User Trained Information Extraction for Document Archiving, Proc. ICDAR’13,
Washington DC 2013.

[23] S. Sutherland, Learning Information Extraction Rules for Semi-structured and Free Text. Machine Learning, 34,
1999, 232-272.

[24] K. Taghve, T.A. Nartker, and J. Borsack, Information access in the presence of OCR errors. Procs. ACM
Hardcopy Document Processing Workshop, , Washington, D.C. Nov 2004, 1-8.

[250 G. Nagy, Disruptive developments in document recognition, Pattern Recognition Letters (2015
http://dx.doi.org/10.1016/j.patrec.2015.11.024) December 2015.

[26] L. Chiticariu, Y. Li, and F.R. Reiss, Rule-based Information Extraction is Dead! Long Live Rule-based Information
Extraction Systems!, Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Seattle, Washington, USA, October, 2013, 827–832.

[27] D.W. Embley and G. Nagy, Green Interaction for Extracting Family Information from OCR’d Books, Document
Analysis Systems Workshop (DAS’18), Vienna, April 2018.

[28] D.W. Embley and G. Nagy, Extraction Rule Creation by Text Snippet Examples, Family History Technology
Workshop, Provo, UT, February 2018.

[29] G. Nagy, Estimation, Learning, and Adaptation: Systems that Improve with Use, Pierre DeVijver Award lecture,
Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, Hiroshima, Japan, November, 2012, 1–10.

[30] Table Analysis for Generating Ontologies: https://tango.byu.edu/
[31] D. W. Embley, S. W. Liddle, D. W. Lonsdale, and S. N. Woodfield, Inter-Generational Family Reconstitution with

Enriched Ontologies, ER 2019, First International Workshop on Conceptual Modeling for Digital Humanities,
Salvador, Bahia, Brazil, Nov. 4-7, 2019.

