Semantically Conceptualizing
and Annotating Tables

Stephen Lynn and David W. Embley*

Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract. Enabling a system to automatically conceptualize and anno-
tate a human-readable table is one way to create interesting semantic-
web content. But exactly “how?” is not clear. With conceptualization and
annotation in mind, we investigate a semantic-enrichment procedure as a
way to turn syntactically observed table layout into semantically coher-
ent ontological concepts, relationships, and constraints. Our semantic-
enrichment procedure shows how to make use of auxiliary world knowl-
edge to construct rich ontological structures and to populate these onto-
logical structures with instance data. The system uses auxiliary knowl-
edge (1) to recognize concepts and which data values belong to which
concepts, (2) to discover relationships among concepts and which data-
value combinations represent relationship instances, and (3) to discover
constraints over the concepts and relationships that the data values and
data-value combinations should satisfy. Experimental evaluations indi-
cate that the automatic conceptualization and annotation processes per-
form well, yielding F-measures of 90% for concept recognition, 77% for
relationship discovery, and 90% for constraint discovery in web tables
selected from the geopolitical domain.

1 Introduction

Ontology creation is a daunting task—manual creation is tedious and time con-
suming, and automatic creation is often disappointingly inaccurate. But for ap-
plications such as the semantic web or making web content directly queriable,
we must facilitate ontology creation, making it reasonable to produce the vast
number and variety of ontologies required for future web applications.

In this paper we focus on one aspect of this daunting task—semantic concep-
tualization and annotation of tables. Because ordinary, human-readable tables
are data-rich and semi-structured, they are a prime target for automatic con-
ceptualization and annotation. We conceptualize a domain of interest when we
create an ontology for the domain, and we annotate documents with respect to
an ontology when we identify objects and relationships within documents and
associate them with pre-defined ontological object sets (conceptual classes, con-
cepts, or value sets) and pre-defined ontological relationship sets (conceptual
properties for classes, taxonomic structures, or associations among objects).
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Our particular focus in this paper is on semantic enrichment of conceptual-
model instances automatically derived from given, syntactic table layout. Se-
mantically enriching ontologies has been the focus of some recent research efforts
(e.g., [3], [8]). These efforts aim mainly at enlarging the vocabulary of ontolo-
gies, and do not use tables as data and meta-data sources. Nevertheless, these
efforts show that semantic enrichment is desirable and also show how to use
the lexical resources available on the web to do semantic enrichment. Seman-
tic table enrichment has also been the focus of some recent work [4,5]. In this
work, researchers use established ontologies to enrich tables by adding columns
and instance data (rather than the other way around—use established tables
to enrich ontologies—as we do in this paper). In addition to using ontological
structure in their work, these researchers also identify data instances in columns
of tables based on the instance values. In our research, we follow the lead of
both ontology-enrichment researchers and table-enrichment researchers, relying
both on available lexical resources and on given instance-recognition semantics.
These two types of semantic resources form the underlying foundation we use
for semantic enrichment.

To be specific about what we aim to do, we provide an example. Given a
table like the one in Figure 1, our semantic-enrichment algorithm generates a
conceptual-model instance that accurately represents the semantics of the table.
The algorithm has three main tasks: concept recognition, relationship discovery,
and constraint discovery. During the steps of the semantic-enrichment process,
the algorithm populates the conceptual-model instance with the data in the
original table. Figure 2 shows the conceptual-model instance, the algorithm gen-
erates from the table in Figure 1. The five U.S. states in Figure 1 are members
of the State object set in Figure 2. The two regions are in the Region object set.
Together the regions and states constitute the elements of the Location object
set. The states aggregated together constitute the different regions. The values
in the population, longitude, latitude, and capital city columns of the table in
Figure 1 are members of the Population, Longitude, Latitude, and Capital City
object sets respectively. Longitude and latitude values aggregated together con-
stitute the Geographic Coordinate object set. Each U.S. state has a population,
a geographic coordinate, and a capital city, and each region has a population
computed as the sum of the populations from the states in the region.

Automated “table understanding” has been the subject of research in the
document analysis community for several decades [10,13]. Most of these efforts
end, however, after only identifying table labels and table instance data. Some re-
searchers have described a semantic-enrichment step in the table-understanding
process, but as e Silva, et al. remark “no [one] has yet found a way of making
[this] general” [11]. In research most similar to our own, Pivk et al. [9] have
implemented a system that takes ordinary tabular data as input and produces
F-Logic frames as output. In their work, they include a semantic-enrichment
step, which has two components: (1) discovery of semantic labels and (2) the
mapping of their internal model into an F-Logic frame. F-Logic [7] is a type
of conceptual model, so Pivk, et al. have the same sort of output as we pro-
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Region and State Information

Population®|Longitude’|Latitude’|Capital City
Location (2000)
Northeast 3.120
Maine 1.275 69°14.0'W | 45°15.2'N| Augusta
New Hampshire 1.236 71°34.3'W [43°59.0'N| Concord
Vermont 0.609 72°40.3'W |43°55.6'N | Montpelier
Northwest 9.315
Washington 5.894 120°16.1"W [ 47°20.0'N |  Olympia
Oregon 3.421 120°58.7"W | 43°52.1'N Salem

*Population in Millions
fGeographic Center

Fig. 1. Sample Table.
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Fig. 2. (a) Generated Enriched Conceptual-Model Instance for the Sample Table in
Figure 1 and (b) Legend for Conceptual-Model Components.
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duce. Further, their semantic-enrichment step uses lexical resources to discover
semantic labels for table data (as does ours), and their mapping step adds func-
tional dependencies for table data (as does ours). Their semantic enrichment
step, however, does not use given instance recognizers (as does ours), nor does
it attempt to discover table-implied generalization/specialization, aggregation,
non-table-data-specific functional dependencies, value augmentations, computed
table values, or mandatory/optional participation of objects in relationship sets
(as does ours).

This paper makes several contributions: (1) It describes a general, compre-
hensive algorithm for automatically enriching tables semantically (Section 2).
(2) It shows that a prototype implementation of this algorithm works well in the
geo-political domain with tables selected independently by a third-party sub-
ject (Section 3). (3) It explains, by referencing other work, how to embed the
semantic-enrichment algorithm as a key component in automatically generat-
ing semantic-web content from data-rich web pages (at the end of Section 4,
which also discusses points of interest and future work regarding the semantic-
enrichment algorithm). The paper thus sheds light on a way to automate the
generation of semantically rich web content from ordinary, human-readable ta-
bles.

2 Semantic-Enrichment Procedure

Figure 3 gives our semantic enrichment algorithm. Its input is a canonicalized
table: a table whose components have been syntactically recognized based on
the table’s layout. The components include the title (if any), the caption (if
any), the table’s labels structured as dimension trees, the data values in known
rows and columns, and the augmentations (footnotes and parenthetical remarks
attached to any of the other components). Figure 4 shows a pictorial view of
the canonicalized-table input for our running example—the table in Figure 1.
The algorithm’s output is a conceptual-model instance semantically enriched
according to the steps in the algorithm. In what follows, we explain and illustrate
each of these steps.

Before doing so, however, we describe the two semantic resources we use in
our approach to semantic enrichment: a natural-language lexicon and a data-
frame library. Without semantic resources no semantic enrichment can take
place—semantic enrichment, by definition, consists of establishing correspon-
dences between accepted semantic resources and the symbolic characterization
being enriched. A natural-language lexicon should provide support for term nor-
malization, and testing whether one word is a hypernym, hyponym, meronym, or
holonym of another word. Hypernym checking, for example, allows the system to
recursively check for term generalizations, which the semantic-enrichment algo-
rithm can use to assign names to unnamed concepts or check for is-a relationships
among recognized concepts. Our current prototype implementation uses Word-
Net as its natural-language lexicon. Data frames in a data-frame library provide
a mechanism for recognizing and classifying character-string representations of
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1. Input: canonicalized table

2. Output: semantically enriched conceptual-model instance

3. —— recognize concepts and associate values with concepts

4. create concept-values mappings:

5. —— concept-values mappings must come from the same dimension tree
6. (column or row of table data values) instance-of (dimension leaf)

7. (spanned table data values) instance-of (spanning dimension node)

8. (dimension siblings/cousins) instance-of (concept)

9. if unclassified table data values remain

10. if no dimension tree has been established as the one with concepts,

11. check: (data values) instance-of (title or caption concept)

12. default: map data to (1) title, (2) caption, or (3) unnamed concept
13. else map data to lowest unclassified nodes in established dimension tree
14. if unclassified labels remain, classify them as non-lexical concepts

15. —— discover relationships, including types of relationships

16. initialize relationships within each dimension tree

17. refine types of relationships:

18. (child) subclass-of (parent)

19. (child) subpart-of (parent)

20. (descendants in subpart-of hierarchy) subclass-of (generalization of root)
21. molecular structure recognition

22. value augmentations

23. values under spanning label

24. join dimension trees

25. —— adjust conceptual-model instance for discovered constraints

26. add discovered constraints and make necessary adjustments:

27. functional relationships

28. is-a constraints

29. computed values

30. mandatory /optional participation

Fig. 3. Semantic-Enrichment Algorithm.

data values using regular-expression recognizers [1]. Suppose, for example, the
string “12-08-2008” appears as a data value in a table. In looking for a con-
cept for this data value, the semantic-enrichment algorithm can discover that
the Date data frame recognizes dates in the form MM-DD-YYYY and can thus
classify the instance value as belonging to the Date data frame.

Lines 3-14: recognize concepts and associate values with concepts

As Figure 3 shows in Line 6, the first step in creating concept-values map-
pings is to check columns and rows of data values to determine whether they
are instances of leaf concepts in dimension trees. We use both lexical services
and data-frame services in our instance-of check. For our running example, the
lexical service recognizes the cities in the last column in Figure 1 as City val-
ues and maps them Capital City, which is the column header and thus also
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Fig. 4. Graphical View of the Sample Table in Figure 1 in Canonical Form.

a dimension leaf node.! Hence, the algorithm creates a concept-values mapping
between the concept Capital City and the set of values { Augusta, Concord, Mont-
pelier, Olympia, Salem}. This action creates the lexical object set Capital City
in Figure 2. In a similar way, the data-frame service recognizes the geographic
coordinates as instances of the leaf nodes Longitude and Latitude in the first
dimension tree in Figure 4. This action results in establishing the lexical object
sets Longitude and Latitude in Figure 2. The data-frame service might also be
able to recognize the Population values, but this recognition is more complex
since the population values are in units of millions. As currently implemented,
our data-frame service does not recognize the population values in Figure 1.

Observe that all three recognized concept-values mappings are for the same
dimension tree. This is a property of well formed tables—the concepts for the
table data values can come from at most one dimension tree—informally, the
data values in rows or columns associate properly with row or column headers,
but not some rows with row headers and also some columns with column headers.
In our implementation, the first established mapping of a row or a column to
a concept in a dimension tree determines the dimension tree for the table’s
concepts.

In the second step of creating concept-values mappings (Line 7), the algo-
rithm checks multiple rows or columns of data values to see if they are instances
of non-leaf nodes in dimension trees. Our sample table in Figure 1 does not have
an example, but a simple variation of the table does. Consider Population, but
instead of just one column of population values for the year 2000, imagine a table
with six columns of population values, one for each year from 2000 to 2005. Fur-

! We note that both the lexical service and the data-frame service can recognize value
sets even without associated names. Thus, for example, if no name had appeared
as the header for the state capitals in the table in Figure 1, the algorithm would
still have recognized the cities in the columns and would have given their header
the name City (or perhaps even State Capital if the lexical or data-frame service
contains enough specific knowledge about these cities).
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ther, imagine each of these columns is headed by a year label and that above the
year labels, a spanning label Population appears. In this case the first dimension
tree in Figure 4 would have a third level below Population with six siblings—the
year labels 2000, ..., 2005. If we further assume that the data-frame library has
a Population data frame that recognizes these values (perhaps, they are actual
population numbers, not masked by being in units of millions), then we have
an example illustrating the second step in creating concept-values mappings. A
label (Population) spans several columns of data values, which are recognized as
instances of a spanning dimension node (a non-leaf node in the dimension tree).

Having checked for mappings between the table’s data values and the table’s
labels, the algorithm considers the possibility that some of the labels might be
values. The algorithm does not check labels already designated as concepts in
established concept-values mappings, but other labels may be values. The third
step in creating concept-values mappings (Line 8) uses lexical and data-frame
services to check whether sibling or cousin nodes in dimension trees are values of
some recognized concept. For our running example, the lexical service recognizes
the U.S. states as instances of its State concept and recognizes Northeast and
Northwest as instances of its Region concept. This gives rise to the object sets
State and Region in Figure 2. Points of interest about checking whether labels
are values include the following: (1) The data-frame service can recognize values
as well as the lexical service. A data-frame for Year, for example, would recognize
the years 2000 — 2005 as siblings under Population for the variation example
mentioned in the previous paragraph. (2) A number of names for a concept
are possible (e.g., Area as well as Region is a possible name for {Northeast,
Northwest}). In the absence of any reason to choose one over the other the choice
is arbitrary. In our implementation, if a synonym name for a concept is in the
title as State and Region are in Figure 1 we prefer these names over alternative
synonyms. Footnotes, captions, and other labels higher up in the dimension tree
are other possible sources for selecting names from among the synonyms. (3) In
our current implementation, we only consider an entire level in a dimension tree
as possible value sets. Although this is typical and works in our running example
for State and Region and even for our Year example, the label-as-value idea can
be expanded to check for some, rather than all, siblings and cousins. For example,
a table with population columns for years 2000 — 2005 might also have columns
at the end for Average Yearly Growth Rate and Five-Year Increase/Decrease.
Only the first six of these eight siblings under Population are year values.

After the three steps in Lines 6-8, it is possible for both data values and
labels to remain unclassified. In our running example, the data values under
Population remain unclassified, and the labels Population, Location, and the
virtual root of the first dimension tree in Figure 4 remain unclassified. Lines
9-13 of our semantic enrichment algorithm tell how we map unclassified data
values to concepts, and Line 14 tells how we classify labels. If we have already
established a dimension tree as the one with concepts to which data values
belong, Line 13 of the algorithm maps the set of data values indexed by a lowest
level unclassified node in this dimension tree as data values for the concept
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named in that node. In our example the values in the column beginning with
3.120 in Figure 1 become values for the concept Population, yielding the lexical
object set Population in Figure 2.

If no dimension tree has been established as the one with concepts to which
data values belong, we check in Line 11 to see whether all the data values belong
to a concept named in the title or caption for the table. Imagine, as an example,
a table that has only population values for locations for several different years.
Imagine further, that the labels in the year dimension consist only of these year
values and that the title for the table is Population Information. Assuming a
population data frame recognizes the data values and the keyword “Population”
in the title, the algorithm would establish a mapping between the concept Pop-
ulation and all the data values in the table. If this semantic check fails, then
in Line 12, the algorithm defaults to establishing a lexical object set for all the
data values in the table, giving it the title as its name (if the table has a title) or
the caption as its name (if the table has no title but does have a caption), and
finally leaving it without a name (if the table has neither a title nor a caption).

For any unclassified labels that remain, Line 14 of the algorithm classifies
them all as non-lexical concepts. In our running example, Location and the vir-
tual root of the first dimension tree become non-lexical object sets. We will
see later how some of these non-lexical concepts can be semantically resolved
into something better. In the absence of additional semantic information to re-
solve these non-lexical object sets into something better, keeping them as non-
lexical concepts turns out to make sense. In our running example, if the semantic
“instance-of” check in Line 8 had not succeeded, each of the labels in the second
dimension tree in Figure 4 would have become non-lexical object sets. We would
then, for example, have a Maine object set, which would have a single object
identifier in it denoting Maine, and a Northwest object set whose single object
identifier would denote the concept Northwest.

Lines 15-2/: discover relationships, including types of relationships

As the first step in discovering relationships (Line 16), the algorithm ini-
tializes the conceptual-model instance with relationship sets that correspond to
the dimension trees. Figure 5 shows the result for our running example. If sib-
lings/cousins have been recognized in the creation of concept-values mappings in
Line 8, some edges in the dimension trees will coalesce. In the second dimension
tree in Figure 4, for example, all the edges at each level will coalesce resulting
in the second tree in Figure 5.

Following the relationship-set-initialization step, the algorithm checks for the
possibility of making several refinements (Lines 17-23). Specifically, the algo-
rithm checks for the possibility that initialized relationship sets might represent
generalization/specialization hierarchies (is-a relationships), aggregation hierar-
chies (part-of relationships), molecular structures (known structures over con-
cept groups), and n-ary relationship sets (n > 2).

The refinement in Line 18 checks for the possibility that the concept name of a
child node is a hyponym of the concept name of its parent node, or, equivalently,
a hypernym from parent to child. If so, the algorithm replaces the relationship
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Fig. 5. Relationship Sets from Dimension Trees.

set with a generalization/specialization constraint. In our running example, our
lexical service recognizes that “Region” is a hyponym of “Location” (a region
is a location), and thus the algorithm makes Location a generalization of Re-
gion. Since is-a relationships require that the object sets in generalizations and
specializations correspond lexically or non-lexically, if ever a mismatch occurs,
non-lexical object sets become lexical. In our example, the introduction of the
is-a relationship between Location and Region causes Location to become lexical.

Checking further, the refinement in Line 18 fails to recognize “State” as be-
ing a hyponym of “Region.” Instead (since a state can be part of a region), the
meronym/holonym check in Line 19 succeeds. “State” is a meronym of “Region,”
or, equivalently, “Region” is a holonym of “State.” Thus, the algorithm intro-
duces an aggregation relationship between Region and State. Then, in Line 20,
since we have a subpart-of hierarchy from State to Region and an is-a relation-
ship between Region and Location, the algorithm checks the descendant State in
the part-of hierarchy to see if it is also a hyponym of Location, the generalization
of Region, which is the root of the subpart-of hierarchy. In our running example,
State is a hyponym of Location (a state is a location), and thus the State object
set becomes a specialization of the Location object set. Figure 2 shows the result
of the steps in Lines 18-20 as the aggregation between State and Region and
the generalization/specialization with Location as the generalization and Region
and State as its specializations.

The algorithm introduces a molecular structure (Line 21) whenever it finds
the constituent components of the molecular structure appropriately configured
in the conceptual-model instance. In our running example, Longitude and Lat-
itude are both associated with some (as yet unnamed) concept. In our imple-
mentation, the Geographic Coordinate data frame in our data-frame library rec-
ognizes this Longitude/ Latitude configuration as being a geographic coordinate.
The algorithm thus introduces the non-lexical object set Geographic Coordinate
as Figure 2 shows.

Value augmentations and values under spanning labels both indicate the
presence of n-ary relationship sets. The value augmentation 2000 in Figure 1
indicates the presence of a ternary relationship set among the locations, the pop-
ulation values, and the value object 2000. Our implementation of value augmen-
tations (Line 22) turns this pattern into a ternary relationship set, which (with
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the addition of some downstream operations) eventually becomes the ternary
relationship among the object 2000 and the lexical object sets Location and
Population in Figure 2. The values-under-spanning-label step (Line 23) applies,
when, for example, we have the year values 2000, ..., 2005 discussed earlier.
When the algorithm recognizes these labels as year values under the spanning
label Population, the step in Line 23 creates a ternary relationship among Year,
Population, and the unnamed object set which eventually becomes Location.

The algorithm’s final step in discovering relationships (Line 24) joins the
conceptual-modeling fragments for each of the table’s n dimensions into a sin-
gle conceptual-model instance. Temporarily, until the algorithm does constraint
analysis in its final phase, the algorithm simply creates an n-ary relationship
set among the root object sets of the n dimension trees. Further, in the case
when the algorithm had established no dimension tree as the one with concepts
to which the data values belong (Line 10), but rather added a lexical object set
for all the data values in the table (Lines 11-12), the algorithm in Line 24 adds
this lexical object set to the n-ary relationship set among the n root object set
making the relationship set an (n + 1)-ary relationship set.

Lines 25-31: adjust conceptual-model instance for discovered constraints

Functional constraints, which we consider in Line 27 of Figure 3, arise in
three ways: (1) molecular structures that include functional relationship sets,
(2) relationship sets established in Lines 16-23 whose instance values indicate
that the relationship set should be functional, and (3) table-implied functional
dependencies—the data values of a table depend functionally on their indexing
labels.

1. Molecular structures bring all their constraints with them. The bijection
between Geographic Coordinate and the aggregate pair (Longitude, Latitude)
in Figure 2 comes from the given molecular structure.

2. Relationship sets established within dimension trees may be functional. In
our implementation, we check for this possibility by checking for 1-1 and
many-1 relationships among instance values. The functional dependency,
State — Region, in Figure 2 arises because of the many-1 relationship be-
tween the state instances and the region instances in Figure 1.

3. Fundamentally, each data value in a table depends functionally on its indexes
(usually its row and column headers). Variations in how the data values and
indexes become part of the conceptual model dictate where these functional
dependencies appear in the evolving conceptual-model instance. Two basic
variations depend on whether the table does (a) or does not (b) have a
dimension tree with multiple concepts for the data values in the table.

(a) One dimension tree with multiple concepts for table values. Our running
example in Figure 1 illustrates one of the most common cases. One dimension
tree has concept nodes for the data values in the table, and a second dimen-
sion tree has a root node whose conceptual object set is lexical and logically
contains all the instance values of the dimension tree. In our example, the
concept nodes in one dimension tree are Population, Longitude, Latitude, and
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Capital City, and the root node in the other dimension tree is Location, which
contains all the State and Region values. In this case, the algorithm adjusts
the relationship set created in Line 24 that joins the dimension trees: it re-
moves the root object set of the dimension tree that contains the concepts
for the table’s data values and also all its connecting relationship sets, and
it adds in their place functional relationship sets from the root in which the
values appear to the object sets representing the concepts (or to a conceptual
aggregate, if any of the conceptual object sets have been aggregated together
to form a molecular structure). Figure 2 shows the result for our running ex-
ample: Location — CapitalCity, Location — GeographicCoordinate, and
Location 2000 — Population. In the example discussed earlier in which
Population is a non-leaf node with children 2000, ..., 2005, the functional
dependency would be Location Year — Population.

All other variations involve (i) non-root-contained values or (ii) more than
two dimension trees. (i) When the root does not contain all the values for
a dimension tree, the algorithm uses the highest level nodes that together
contain all the values. In the worst case, the values are all in the leaves. In a
variation of our running example in which none of the hypernym/hyponym
and holonym/meronym relationships are recognized, the algorithm would
yield many functional relationship sets: Northeast 2000 — Population, ...,
Vermont — GeographicCoordinate, ..., Oregon — CapitalCity. (ii)) When
a table has n dimension trees (n > 2), each dimension tree except the
dimension tree with multiple concepts for table values provides domains
for the functional dependencies (the codomains are always in the concept-
providing dimension tree). The functional relationship sets are thus always
n-dimensional.

(b) No dimension tree with multiple concepts for table values. This variation
has two cases: (i) one dimension tree has a conceptual root node representing
all the data values in the table and (ii) no dimension tree has a conceptual
root node for the table’s data values. In both cases, the algorithm makes the
n-ary relationship set created in Line 24 functional. For case (i), the domains
for the functional relationship set come from all the dimension trees, except
the dimension tree that has the conceptual root node, and the codomain
is the object set for this conceptual root node. For case (ii), all the dimen-
sion trees contribute domains for the functional relationship set, and the
codomain is the lexical object set established either in Line 11 or Line 12.
For both cases, the object set(s) in a dimension tree that become domain
object set(s) are the highest level node(s) that together contain all the val-
ues for a dimension tree. As an example, consider a table like the table in
Figure 1 but with just population values for the years 2000-2005. If the root
of the dimension tree for years is Population, the linking relationship set
between Population and Location would become functional from Location
to Population.

For is-a constraints (Line 28), the algorithm considers generalization/special-
ization relationships identified in Lines 18 and 20. It constrains the is-a to have
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a union constraint if all values in the generalization object set are also in at
least one of the specialization object sets, to have a mutual-exclusion constraint
if there is no overlap in the values in the specialization object sets, and to
have a partition constraint if the values satisfy both union and mutual-exclusion
requirements. As a result of these checks for our running example, the W in
Figure 2 appears: every value in the Location object set is also in either the
Region object set or the State object set, and no value is in both.

Tables often include columns or rows that contain summations, averages,
or other value aggregates. Because checking all possible combinations for all
possible aggregate operators is prohibitive, the algorithm (Line 29) should only
check probable combinations with likely operators. Our current implementation
checks only for summations and averages for data cells associated with non-leaf
nodes in dimension trees. Thus, our algorithm examines values such as 3.120,
which is indexed by the non-leaf node Northeast, computes aggregates of values
from related object sets, and compares them. The algorithm captures constraints
that hold and adds them to the the conceptual-model instance. In our running
example, these checks add the constraint Region. Population = sum(Population);
Region, which means that a region’s population is the sum of the population
values grouped by Region.

In Line 30, the algorithm determines whether objects in an object set par-
ticipate mandatorily or optionally in associated relationship sets. The algorithm
identifies object sets whose objects have optional participation in relationship
sets by considering empty value cells in the table. As Figure 2 shows, the step
in Line 30 discovers that Location optionally participates with Geographic Co-
ordinate and also with Capital City because some locations, namely Northeast
and Northwest, have no associated longitude, latitude, and city values.

3 Experimental Evaluation

We evaluated our implemented version of the semantic-enrichment algorithm
in Figure 3 using a test set of tables found by a third-party participant. We
asked the participant for twenty different web pages that contain HTML tables—
stipulating that the test tables should come from at least three distinct sites,
should contain a mix of simple and complex tables, and should all be from the
geopolitical domain. To canonicalize the tables, we used a tool [6] that makes
it easy to designate a table’s labels, data values, and augmentations. Our algo-
rithm processed each of the twenty canonicalized tables and saved the resulting
conceptual-model instances for manual evaluation with respect to its ability to
do concept /value recognition, relationship discovery, and constraint discovery.?

We use precision and recall to evaluate how well our implementation of the
semantic-enrichment algorithm performs. We observe how many concept-value
mappings, relationships, and constraints the algorithm correctly identifies C,

2 When building semantically enriched conceptual-model instances, there is often no
“right” answer. Many tables correspond to multiple valid instances. Our evaluation
permitted only valid conceptualizations, but did allow for reasonable alternatives.
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how many it identifies incorrectly I, and how many it misses M. We then
compute precision by C/(C + I) and recall by C/(C + M). For the experi-
mental test, our implemented prototype achieved 87% precision and 94% recall
for the concept/value-recognition task, 73% precision and 81% recall for the
relationship-discovery task, and 89% precision and 91% recall for the constraint-
discovery task. As a combined measure of precision and recall, we also com-
puted F-measures. Concept recognition and constraint discovery both have an
F-measure of 90% while relationship discovery has an F-measure of 77%.

4 Discussion Points and Future Work

As a result of empirically investigating our prototype implementation we iden-
tified several potential enhancements. We should:

— check for totals and other aggregates in all columns or rows of numeric data
values, not just in data cells for non-leaf nodes in dimension trees;

— check for lists of values rather than a single value in data cells;

— check label instances in flat dimensions tree for generalization/specialization
and aggregation relationships (the canonicalization step may not be able to
syntactically discern nestings that indicate these possibilities);

— combine multiple columns (or rows) that corresponded to the same concept—
for example, when a table about mountain peaks contains two columns la-
beled Height, one in meters and in the other in feet; and

— discard columns that merely provide rank sortings based on some other
column—sort order is always recoverable.

An in-depth discussion of canonicalization issues, an assumed preprocessing
step to our semantic-enrichment algorithm, is beyond the scope of this paper.
We mention, however, that the motivation is to split the work of canonical-
ization (based on observations of syntactic layout) and semantic enrichment
(based on observations with respect to semantic resources such as WordNet and
a data-frame library). We and many others, especially in the document-analysis
community, are investigating the problem of table canonicalization [10]. Some
good results have been found, and better results are likely forthcoming. As a
direction for further work, it appears possible to synergistically exploit syntac-
tic/semantic interplay. For example, syntactic discovery of table orientation may
suggest semantic label /value-set associations when semantic resources fail to dis-
cover them, and semantic label analysis may suggest dimension-tree nesting even
when it is not obvious from syntactic layout.

Our semantic-enrichment algorithm assumes the existence of a good lexi-
con and data-frame library, both rich in the domain knowledge about a table’s
content. But what if these resources are unavailable or insufficiently provide
semantic information for a domain of interest? We offer two answers:

1. The semantic-enrichment algorithm (Figure 3) degrades gracefully. When lit-
tle or no semantic knowledge applies, the algorithm still successfully creates
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a semantic-model instance from a canonicalized table. Although additional
syntactic clues enable the algorithm to perform better, it can succeed based
only on a proper division between values and labels, split into n dimensions
for an n-dimensional table.

2. The semantic resources—the data-frame library in particular—can improve
itself with use through self-adaptation. Whenever the algorithm establishes a
concept-values mapping, the system can update its data-frame recognizers by
adding any values not currently recognized—for example, the system could
add cities in Figure 2 not already recognized by the Clity data frame. The
system could also establish a new data frame for the library and initialize
its recognizers with information in the table. If, for example, a data frame
for Population did not already exist, the system could establish one based
on the information in the table in Figure 2. The system could also update
keywords and units for data frames—adding, for instance, from the table
in Figure 2 that populations can be expressed in units of millions and that
“Geographic Center” is a phrase connected with geographic coordinates.

The algorithm for semantic-enrichment, presented here, does not stand alone.
We envision it as part of a much larger system that automatically, or at least
semi-automatically, generates interesting semantic-web content from data-rich
web pages [2]. For tables, the larger system (1) generates a conceptual-model
instance and represents it as an OWL ontology, (2) converts all recognized in-
stance values into RDF instance data for the OWL ontology, (3) allows the data
to be queried with SPARQL or a free-form-query engine, and (4) displays query
results both in tabular form and as highlighted data values in the original HTML
table processed by the system. Thus, this larger system not only conceptualizes
the table but also really does annotate the table, keeping track of the table’s data
in its original form and displaying it as provenance information, highlighted and
in the context of its original HT'ML table.

We also envision the semantic-enrichment algorithm as part of a system called
TANGO (Table ANalysis for Generating Ontologies). TANGO [12] supports on-
tology creation for a domain D by allowing users to semi-automatically assemble
ontologies from a set of tables that covers the concepts in D. TANGO (1) canoni-
calizes tables, (2) semantically conceptualizes tables (as described in this paper),
and (3) integrates conceptualized tables of the domain D into a growing ontology
that becomes an ontology for D.

5 Concluding Remarks

We have described an an algorithm that automates the generation of semanti-
cally rich conceptual-model instances from canonicalized tables. The algorithm
uses a novel approach to semantic enrichment based on semantic knowledge
contained in lexicons and a data-frame library. Experimental results show that
the algorithm is able to automatically identify the concepts, relationships, and
constraints for data in a table with a relatively high level of accuracy—with
F-measures of 90%, 77%, and 90% respectively in web tables selected from the
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geopolitical domain. These results are encouraging in our effort to automate the
conceptualization and annotation of semi-structured data and make the data
available on the semantic web.
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