
Theoretical Foundations

for Enabling a Web of Knowledge

David W. Embley� and Andrew Zitzelberger∗

Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract. The current web is a web of linked pages. Frustrated users
search for facts by guessing which keywords or keyword phrases might
lead them to pages where they can find facts. Can we make it possible
for users to search directly for facts embedded in web pages? Instead of a
web of human-readable pages containing machine-inaccessible facts, can
the web be a web of machine-accessible facts superimposed over a web of
human-readable pages? Ultimately, can the web be a web of knowledge
that can provide direct answers to factual questions and support these
answers by referencing and highlighting relevant base facts embedded in
source pages? Answers to these questions call for distilling knowledge
from the web’s wealth of heterogeneous digital data into a web of knowl-
edge. But how? Or, even more fundamentally, what, precisely, is this
web of knowledge, and what is required to enable it? To answer these
questions, we proffer a theoretical foundation for a web of knowledge: We
formally define a computational view of knowledge in a way that enables
practical construction and use of a web of knowledge.

1 Introduction

The web contains a wealth of knowledge. Unfortunately, most of the knowledge
is not encoded in a way that enables direct user query. We cannot, for example,
directly google for a car that is a 2003 or newer selling for under 15 grand; or
for the names of the parents of great-grandpa Schnitker; or for countries whose
population will likely decrease by more than 10% in 50 years.

A way to enable direct query for facts embedded in web pages and facts im-
plied by these stated facts is to annotate stated facts with respect to ontologies.
Annotating facts with respect to ontologies, implicitly populates these ontolo-
gies, turning them into a database over which structured queries can be executed.
Annotation links also provide a form of provenance and authentication, allowing
users to verify query results by checking original sources. Furthermore, facts and
ontological concepts may appear in more than one populated ontology. Linking
facts and ontological concepts across ontologies can provide navigation paths to
explore additional, related knowledge. The web with a superimposed layer of
interlinked ontologies each annotating a myriad of facts on the underlying web
becomes a Web of Knowledge, a WoK.1

� Supported in part by the National Science Foundation under Grant #0414644.
1 To many, this vision of a WoK constitutes the semantic web [37].

2 D.W. Embley and A. Zitzelberger

Although the vision of a WoK is appealing, there are significant barriers
preventing both its creation and its use. Ontology languages exist, with OWL
being the de facto standard. RDF files can provide data for these ontologies and
can also store annotation information linking data to facts in web pages and
linking equivalent information in RDF files to one another. The SPARQL query
language is a standard for querying RDF data. Thus, all constituent components
for a WoK are industry standards in common use, and they even all work together
allowing for immediate WoK development and usage. Nevertheless, the barriers
of creation and usage remain high and effectively prevent WoK deployment.
The creation barrier is high because of the cost involved in developing OWL
ontologies and annotating web pages by linking RDF-encoded facts in web pages
to these OWL ontologies. The usage barrier is high because untrained users
cannot write SPARQL queries.

Extraction ontologies provide a way to solve both creation and usage prob-
lems [13]. But, what exactly are extraction ontologies, and how do they resolve
creation and usage problems? We answer these questions in this paper by for-
malizing extraction ontologies (Section 2), formalizing the notion of a WoK (Sec-
tion 3), formalizing WoK construction procedures (Section 4), and formalizing
user-friendly, WoK query-processing procedures (Section 5).

The success of the WoK vision depends on a solid theoretical foundation.
Thus, the contributions of this paper are: (1) the formalization of extraction
ontologies, knowledge bundles, and interconnected knowledge bundles as a WoK;
(2) the formalization of WoK construction tools; and (3) the formalization of
WoK usage tools. Indirectly, further contributions include: (1) the basis for an
open architecture for pluggable tools for realizing a WoK along with implemented
examples of construction and usage tools; and (2) the identification of strengths
and weaknesses of WoK construction and usage tools and thus the identification
of where opportunities lie for future research and development.

2 Extraction Ontologies

We base our foundational conceptualization for a web of knowledge on the con-
ceptual modeling language OSM (Object-oriented Systems Model) [17]. OSM,
however, simply provides a graphical representation of a first-order-logic lan-
guage. Here we restrict OSM to be decidable, yet powerful enough to represent
desired ontological concepts and constraints. We call our restriction OSM-O,
short for OSM-Ontology. We thus base our foundational conceptualization di-
rectly on an appropriate restriction of first-order logic. This WoK foundation
should be no surprise since it is the basis for modern information systems and
has been the basis for formalizing information since the days of Aristotle [4].

Definition 1. OSM-O is a triple (O, R, C):
– O is a set of object sets; each is a one-place predicate; and each predicate

has a lexical or a non-lexical designation.2

2 In forthcoming definitions, lexical predicates will be restricted to literal domain-value
substitutions like strings, integers, phone numbers, email addresses, and account

Lecture Notes in Computer Science 3

– R is a set of n-ary relationship sets (n ≥ 2); each is an n-place predicate.
– C is a set of constraints:

• Referential integrity: ∀x1...∀xn(R(x1, ..., xn) ⇒ S1(x1) ∧ ... ∧ Sn(xn) for
each n-ary relationship set R connecting objects S1, ..., Sn.

• Participation constraint min:max cardinality: for every connection of an
object set S to an n-ary relationship set R, ∀xi(S(xi) ⇒ ∃≥min<x1, ...,
xi−1, xi+1, ..., xn>(R(x1, ..., xn))) if min>0, and ∀xi(S(xi) ⇒ ∃≤max<x1,
..., xi−1, xi+1, ..., xn>(R(x1, ..., xn))) if max is not * (the symbol de-
noting an unbounded maximum).

• Generalization/specialization: ∀x(S1(x) ∨ ... ∨ Sn(x) ⇒ G(x)) for each
generalization object set G of specialization object sets S1, ..., Sn in
an is-a hierarchy. In addition, ∀x(Si(x) ⇒ ¬Sj(x)) for 1 ≤ i,j ≤ n
and i 	= j if the specialization object sets are disjoint and ∀x(G(x) ⇒
S1(x)∨...∨Sn(x)) if the generalization object set is complete—is a union
of the specialization object sets.

• Aggregation: meronym-holonym relationship sets grouped as an aggrega-
tion in an is-part-of hierarchy. �

0:1

1:*

0:1

1:*

1:*
0:1

1:*

0:1
1:* 0:1

1:*

0:1

1:*

0:1

1:*

0:*

1:*0:*

TrimModel

ModelTrimYear

Make

Price Mileage Color

Transmission

AccessoryBodyType

Engine

FeatureCar

Fig. 1. OSM-O Model Instance.

Example 1. Figure 1 shows an OSM-
O model instance. Rectangular boxes
are object sets—dashed if lexical
and solid if non-lexical. Lines be-
tween object sets denote relation-
ship sets. Participation constraints
are next to relationship-set/object-
set connections in a min:max for-
mat. (We use 1 as shorthand for 1:1.)
A white triangle denotes generaliza-
tion/specialization with the general-
ization connected to the apex of the
triangle and the specializations con-
nected to the base. A black triangle
denotes aggregation with the super-part connected to the apex of the triangle
and the sub-parts connected to the base. Although graphical in appearance, an
OSM-O diagram is merely a two-dimensional rendition of predicates and closed
formulas as defined in Definition 1. �

Definition 2. Let M = (O, R, C) be an OSM-O model instance. Let I be an
interpretation for M that has a domain D = LID ∪ OID (LID ∩ OID = ∅) and
a declaration of True or False for each valid instantiation of each predicate
in O ∪ R with values in D.3 For predicates in O, valid instantiations require

numbers. Non-lexical predicates will be restricted to substitutions of object identi-
fiers that represent real-world objects like people, geopolitical entities, and buildings,
or abstract concepts like a marriage or ownership.

3 For an O-predicate, if a value instantiation v is True, v is in the O object set and is
not in the O object set when the instantiation is False. Similarly, for an R-predicate,

4 D.W. Embley and A. Zitzelberger

2:*

1

1

0:*

1:*

1

1:*

1

1:*1

1

1:*

1

1:*

11

1:*

1

1:*
0:1

1:*
1

1:*
1

1 1:*

11

(forall x)((forall y)((forall z)((forall w)((forall v)(
 Generalization/Specialization_Group-Subset_Constraint(x,y) and
 Generalization/Specialization_Group-Subset_Constraint(x,z) and
 Subset_Constraint-Generalization_Object_Set(y,v) and
 Subset_Constraint-Generalization_Object_Set(z,w) =>
 v = w)))))

(forall x)((forall y)((forall z)((forall w)((forall v)(
 Aggregation_Group-Aggregation_Relationship_Set(x,y) and
 Aggregation_Group-Aggregation_Relationship_Set(x,z) and
Aggregation_Relationship_Set-SuperPart_Object_Set(y,v) and
Aggregation_Relationship_Set-SuperPart_Object_Set(z,w) =>
v = w)))))

(forall x)((forall y)((forall z)(
 Participation_Constraint-Min(x,y) and
 Participation_Constraint-Max(x,z) and
 z != "*" => y <= z)))

MaxMin

Aggregation
Relationship Set

Aggregation
Group

SuperPart
Object Set

SubPart
Object Set

Generalization/
Specialization
Constraint

Generalization/
Specialization
Group

Subset
Constraint

Specialization
Object Set

Generalization
Object Set

Connection

Participation
Constraint

Relationship Set RelationshipSet Name

ObjectSet NameObject Set

Nonlexical
Object Set

Lexical
Object Set

Fig. 2. OSM-O Meta-model.

lexical predicates to be instantiated with values in LID and non-lexical predicates
to be instantiated with values in OID. For predicates in R, valid instantiations
require each value v to be lexical or non-lexical according to whether the connected
object set for v is lexical or non-lexical respectively. If all the constraints of C
hold, I is a model of M , which we call a valid interpretation of M (to avoid
an ambiguous use of the word “model” when also discussing conceptual models).
An instantiated, True predicate for a valid interpretation is a fact. �

Example 2. A valid interpretation of the OSM-O model instance in Figure 1
contains facts about cars. A possible valid interpretation might include the facts
Car(Car3), Y ear(2003), Car-Y ear(Car3, 2003), Model(“Accord”), Trim(“LX”),
ModelT rim(ModelT rim17), Trim-isPartOf -ModelT rim(“LX”, ModelT rim17),
and Car-ModelT rim(Car3, ModelT rim17). Note that the object sets Car and
ModelT rim, being non-lexical, have identifiers for their domain-value substi-
tutions. Constraints, such as ∀x(Car(x) ⇒ ∃≤1y(Car-Y ear(x, y))), all hold. �

The OSM-O model instance in Figure 2 is a meta-model that defines valid
OSM-O model instances. Note that since OSM-O is predicate calculus (“dis-
guised” in graphical notation), the three additional closed formulas in Fig-
ure 2 are appropriate well-formed-formula additions to the statements in the
meta-model. Two of them ensure that the group members of any generaliza-
tion/specialization and any aggregation have the same parent. The third ensures
that min-cardinality values are no greater than max-cardinality values.

if an n-tuple instantiation <v1, ..., vn> is True, <v1, ..., vn> is in the R relationship
set and is not in the relationship set when the instantiation is False.

Lecture Notes in Computer Science 5

Definition 3. If M is a valid interpretation for the OSM-O meta-model in-
stance, then M is a valid model instance. �

Example 3. The car ontology in Figure 1 is a valid interpretation of the OSM-O
meta-model in Figure 2. Part of the interpretation would include ObjectSet
Name(“Feature”), and if the Feature object set has the identifier O13, then
also Object Set(O13), Generalization Set(O13), Lexical Object Set(O13), and
Object Set-ObjectSet Name(O13, “Feature”). Note that the meta-model does
not dictate names for object and relationship sets. We want them to be mnemonic,
of course, as they are here and in Example 2, but we can make them mnemonic
in any way we wish. This also solves the problem of naming a second bi-
nary relationship set between the same two object sets. In Figure 1, for ex-
ample we could have two relationship sets between Car and Price: one of
the predicate names could be Car sellsFor Price while the other could be
Car hasManufacturerSuggested Price. �

Theorem 1. OSM-O is decidable. �

Proof. Let M = (O, R, C) be an OSM-O model instance. We show how to
translate each component of M to an OWL-DL instance Z. Then, since OWL-
DL is decidable, OSM-O is decidable.

– For each object set S ∈ O create a class (owl:Class) in Z.
– For each lexical object set S ∈ O create a data-type property (owl:Datatype-

Property) in Z with domain S and with the range being any appropriate data
type.

– For each generalization/specialization group H with G as the generalization
object set and S1, ..., Sn as the specialization object sets, process constraints
in C as follows:
• Make each class created from S1, ..., Sn a subclass of (rdfs:subClassOf)

the class created for G.
• If H has a union constraint, make the class created for G the union of

(owl:unionOf) the classes S1, ..., Sn.
• If H has a disjoint constraint, make Si disjoint with (owl:disjointWith)

Sj , (1 ≤ i, j ≤ n; i 	= j).
– Process relationship sets in R as follows:

• For each n-ary relationship set Q ∈ R with n > 2, for purposes of
the translation, replace Q with a non-lexical object set S and binary
relationships to each participating object set of Q. Add participation
constraints 1 (= 1:1) for each S-connection and let the participation
constraints for connections to other object sets be as originally specified
in Q. Create a class for S in Z.

• (After translating n-ary relationship sets, n > 2, to binary relationship
sets, all relationship sets in R are binary. These relationship sets include
the binary relationship sets originally in R, the binary relationship sets
created from n-ary relationship sets for purposes of translation, and all
aggregation relationship sets.) For each relationship set in R, create an
object property (owl:ObjectProperty) and a second object property and
make eacn an inverse of (owl:inverseOf) the other.

6 D.W. Embley and A. Zitzelberger

• For each participation constraint in C, create a restriction with min and
max constraints (owl:Restriction, owl:minCardinality, and owl:maxCard-
inality) for the appropriate object property created from R. �

We have implemented the transformation in the proof of Theorem 1.4 Thus,
when we discuss mappings to OSM-O (below), mappings to OWL-DL are implied
and well defined. Further, it should be clear, that given a mapping of a model
instance M to OWL-DL, the mapping of the instance data in M to RDF such
that it corresponds to the generated OWL-DL is straightforward. Thus, when
instance data is part of a mapping to an OSM-O model instance, a mapping of
the data to RDF is also implied and well defined. We have also implemented
this transformation to RDF.

Similar to the work by Buitelaar, et al. [8], we now show how to linguistically
ground OSM-O. For us, linguistically grounding OSM-O turns OSM-O model
instances into OSM-Extraction-Ontology model instances (OSM-EO model in-
stances). We begin by defining an ordinary abstract data type for each object
set. We then add linguistic recognizers for instance values, operators, operator
parameters, and relationships.

Definition 4. An abstract data type is a pair (V , O) where V is a set of values
and O is a set of operations. �

Definition 5. A data frame is an abstract data type augmented as follows:

1. The data frame has a name N designating the set of values V , and it may
have a list of synonyms for N .

2. The value set V has an instance recognizer that identifies lexical patterns
denoting values in V .

3. The operations set O includes two (additional) operators for each lexical
object set: (1) an input operator to convert identified instances to the internal
representation for V and (2) an output operator to convert instances in V
to strings.

4. Each operation o in O has an operator recognizer that identifies lexical pat-
terns as indicators that o applies. Further, the recognizer identifies lexical
patterns that, along with instance recognizers, identify parameters for o. �

As is standard, implementations of abstract data types are hidden, and we
hide implementations for data frames as well. Similar to data independence
in database systems, this approach accommodates any implementation; in par-
ticular it allows for new and better recognizers.5 To be complete and precise,
however, we give examples to illustrate how we have implemented them.
4 Although unspecified in our proof, our implementation automatically assigns names

to object and relationship sets based on given object-set names and relationship-set
connections among names.

5 Many kinds of recognizers are possible. Much work has been done on named entity
recognition, and entire communities and conferences/workshops are devoted to these
issues. We want the WoK vision to be able to include and make use of this work.

Lecture Notes in Computer Science 7

Price
internal representation: Integer
external representation: \$[1-9]\d{0,2},?\d{3} | \d?\d [Gg]rand | ...
context keywords: price|asking|obo|neg(\.|otiable)| ...
...
LessThan(p1: Price, p2: Price) returns (Boolean)
context keywords: (less than | < | under | ...)\s*{p2} | ...
...

Make
...
external representation: CarMake.lexicon
...

Fig. 3. Data Frames.

Example 4. Figure 3 shows two partial data frames for object sets in the OSM-O
model instance in Figure 1, one for Price and one for Make. The Price data
frame uses regular expressions for its recognizers, whereas the Make data frame
uses lexicons. In our implementation, we can use either or both together. The
Price data frame also shows a recognizer for an operator. The p2 within curly
braces indicates the expected appearance of the Price parameter p2. Thus a
phrase like “under 15 grand” is recognized as indicating that the price of the
car—parameter p1—should be less than $15,000. �

A data frame for a non-lexical object set is typically degenerate: Its value set
is a set of object identifiers. Its operation set consists only of operators that add
and remove object identifiers. Its name and synonyms and its recognizers that
identify object instances, however, can be quite rich.

For relationship sets, the definition of a data frame does not change, but a
typical view of the definition shifts as we allow value sets to be n-tuples of values
rather than scalar values. Further, like recognizers for operators, they rely on
instance recognizers from the data frames of their connected object sets.

Example 5. Suppose the Car object set in Figure 1 has a relationship set to
a Person object set. The relationship-set data frame may have recognizers for
any one of several possible relationships such as {Person} is selling {Car},
{Person} posted {Car} ad, or {Person} is inquiring about {Car}. �

Definition 6. If M is an OSM-O model instance with a data frame for each
object set and relationship set, M is an OSM-EO model instance. �

Definition 7. An ontology is linguistically grounded if it can both “read” and
“write” in some natural language. An ontology can “read” and “write” in some
natural language if each object set and relationship set has a data frame. �

How well a particular OSM-EO model instance can read and write makes
a difference in how well it performs. Our experience is that OSM-EO model
instances can read some documents well (over 95% precision and recall [16]),
but it is clear that opportunities abound for further research and develop-

8 D.W. Embley and A. Zitzelberger

ment. Writing human-understandable descriptions is less difficult to achieve—
just select any one of the phrases for each object set and relationship set (e.g.,
Person(Person17) is selling Car(Car734)). Making the written description
pleasing is, of course, more difficult.

Theorem 2. An OSM-EO model instance is linguistically grounded. �

Proof. Clear from Definitions 6 and 7. �

3 Web of Knowledge

Ontology is the study of “the nature of existence.” Epistemology is the study of
“the origin, nature, methods, and limits of human knowledge.” In the previous
section we have given a computational view of ontology—a view that lets us work
with ontologies in information systems. Here we similarly give a computational
view of epistemology. This computational view of epistemology constitutes the
formal foundation for a web of knowledge.

Definition 8. The collection of facts in an OSM-O model instance constitutes
the extensional knowledge of the OSM-O model instance. The collection of im-
plied facts derived from the extensional knowledge by inference rules constitutes
the intentional knowledge. The extensional and intentional knowledge together
constitute the knowledge of the OSM-O model instance. �

Although this view of knowledge is common in computing, Plato, and those
who follow his line of thought, also demand of knowledge that it be a “justified
true belief” [26]. “Knowledge” without some sort of truth authentication can be
confusing and misleading.

Definition 9. Truth is knowledge of things as they are, as they were, and as
they are to come. “Knowledge of things” means facts about objects. By adding
time intervals to facts, “as they are” means that the time interval covers the
present; “as they were” means at some time interval in the past; and “as they
are to come” means at some time interval in the future. If a fact holds over all
time intervals (past, present, and future), the fact is an eternal truth. �

Unfortunately, truth, without a perfect oracle, is always suspect. Believing
axiomatically that it is impossible to computationally construct a perfect ora-
cle, how can we compensate? We see three possibilities: (1) truth as community
agreement—e.g., Wikipedia style; (2) probabilistic truth; and (3) truth derived
from proper reasoning chains grounded in original sources. All three, unfortu-
nately, are problematic: community agreement depends on the willingness of
individuals to participate and to agree; probabilistic truth depends on estab-
lishing probabilities and on being able to derive probabilities for answers to
queries—hard problems that do not scale well [12]; and reasoning with rules and
fact sources depends on acceptance of the rules and fact sources as genuine.

Lecture Notes in Computer Science 9

For our vision of a WoK, we attempt to establish truth via provenance and
authentication. We provide for reasoning with rules6 and for ground facts in
sources. We cannot, however, guarantee that rules and facts in sources are gen-
uine. We thus compensate by simply exposing them. When an extraction ontol-
ogy extracts a fact from a source document, it retains a link to the fact; and
when a query answer requires reasoning over rules, the system records the rea-
soning chain. Users can ask to see fact sources and rule chains, and in this way
they can authenticate facts and reasoning the way we usually do—by checking
sources and fact-derivation rules. We also ignore time intervals for now, leaving
the time over which facts hold to be determined by understanding the original
sources, the rules, and the context of the sources and rules.

Definition 10. A knowledge bundle is a 5-tuple (O, E, S, I, R) where O is
an OSM-O model instance; E is an OSM-EO instance whose OSM-O instance
is O; S is a set of source documents from which facts for E are extracted; I is
a valid interpretation for O whose facts are extracted from the documents in S;
and R is a rule set where each rule is a horn clause whose body-predicates are
either predicates in O or are head-predicates of other rules in R. �

Definition 11. A Web of Knowledge (WoK) is a collection of knowledge bun-
dles interconnected with binary links, <x, y>, of two types: (1) object iden-
tity: non-lexical object identifier x in knowledge bundle B1 refers to the same
real-world object as non-lexical object identifier y in knowledge bundle B2. (2)
Object-set identity: object set x in knowledge bundle B1 designates the same set
of real-world objects as object set y in knowledge bundle B2. �

4 WoK Construction

To construct a WoK, we must be able to construct a knowledge bundle, and
we must be able to establish links among knowledge bundles. We can con-
struct knowledge bundles and establish links among them by hand (and this
should always be an option). However, scaling WoK construction demands semi-
automatic procedures, with as much of the construction burden placed on the
system as possible—all of it when possible. For knowledge bundles, our auto-
mated construction tools identify applicable source information and transform
it into knowledge-bundle components. For links among knowledge bundles, we
apply record-linkage and schema-mapping tools.

Definition 12. A transformation is a 5-tuple (R, S, T , Σ, Π), where R is a set
of resources, S is the source conceptualization, T is the target conceptualization
for an S-to-T transformation, Σ is a set of declarative source-to-target transfor-
mation statements, and Π is a set of procedural source-to-target transformation
statements. �

6 In our implementation, we use Pellet [30].

10 D.W. Embley and A. Zitzelberger

Definition 12 leaves several of its components open—to take on specific mean-
ings in a variety of knowledge-bundle building tools. The “set of resources” is un-
defined, but we intend this to mean resources such as WordNet and a data-frame
library. “Target conceptualizations” are knowledge bundles. “Source conceptual-
izations” depend on sources whose fact conceptualizations can be formal, semi-
formal, or informal. “Declarative” and “procedural” “source-to-target transfor-
mation statements” can be written in a variety of formal languages. Although
leaving transformation statements loosely defined, as we do, presents some prob-
lems, it also presents some opportunities. Successfully developing automatic and
good semi-automatic transformations over a broad spectrum of documents for a
variety of ontological contexts should be both beneficial and profitable.

To be specific about some of the possibilities, however, we provide some
examples. We first give some restrictive transformations guaranteed to capture
all facts in the source and then mention some less restrictive transformations.

Definition 13. Let S be a predicate calculus theory with a valid interpretation,
and let T be a populated OSM-O model instance constructed from S by a trans-
formation t. Transformation t preserves information if there exists a procedure to
compute S from T . Let CS be the closed, well formed formulas of S, and let CT

be the closed, well formed formulas of T . Transformation t preserves constraints
if CT ⇒ CS . �

Theorem 3. Let S be a nested table with a single label path to each data item,
and let T be an OSM-O model instance. A transformation from S to T exists
that preserves information and constraints. �

Proof. (sketch) We show how to construct and populate T from S such that an
inverse procedure exists and such that the constraints of T imply the constraints
of S. (The transformation of the nested table in Figure 4 to the OSM-O model
instance in Figure 5 illustrates the transformation.) To initialize T , we create a
non-lexical object set to represent the table as a concept in the OSM-O ontology
and label it “Table”. Each label in S becomes an object set in T . Because of
the restriction of S having a single label path to each data item, only the leaf
nodes of T are lexical object sets (containing the data items). Relationship sets
mark the path between labels down to the data items. Participation constraints
on the parent sides in the tree of T are inferred from the number of items in
the object sets of S and are assumed to be 1:* on the child sides. The reverse
transformation is straightforward as the ontology is a hierarchical view of the
table starting at the “Table” object set. The parent participation constraints of
T imply the inferred participation constraints of S. �

We can exploit the direct correspondence between the nested tables of The-
orem 3 and OSM-O in several ways. First, as intended, we can convert facts
in nested tables into knowledge bundles for a WoK. Second, nested tables from
the WormBase site are all sibling tables—they have identical, or nearly iden-
tical structure. We have shown elsewhere that we can automatically construct
an ontology for the site (and any other site with sibling tables) and extract

Lecture Notes in Computer Science 11

Fig. 4. Nested Table in a Molecular-Biology Web Page.

the information in all the tables to populate the ontology [32]. Third we can
create extraction ontologies automatically (although they likely need some en-
hancement) [32]. Fourth we can turn the process around and let users specify
ontologies via nested forms [33].

Theorem 4. Let S be a relational database with its schema restricted as follows:
(1) the only declared constraints are single-attribute primary key constraints and
single-attribute foreign-key constraints, (2) every relation schema has a primary
key, (3) all foreign keys reference only primary keys and have the same name
as the primary key they reference, (4) except for attributes referencing foreign
keys, all attribute names are unique throughout the entire database schema, (5)
all relation schemas are in 3NF. Let T be an OSM-O model instance. A trans-
formation from S to T exists that preserves information and constraints. �

Proof. (sketch) For every relation, create a non-lexical object set and make its
name the name of the relation. Except for attributes that reference foreign keys,
create a lexical object set for each attribute and make its name the attribute
name. For each schema S, create a binary relationship set between the non-lexical
object set created for S and each lexical object set created from attributes in S.

12 D.W. Embley and A. Zitzelberger

1:*

0:1

1:*

1

1:*

1

1:*

1

1:*

1

1:*

1

1:*

1:*

1:*

1

1:*

1

1:*

1

1:*

1

1:*
1

...... ...

...

...

Genomic Environs

Other names
Sequence Name

Genetic Position

CGC Name

NCBI KOGsIDs

LocationIdentification

Table

Genomic Position

Gene Models

Gene Model

Fig. 5. Generated OSM-O Model Instance.

The participation constraint on the non-lexical side of all these relationship sets
is 1. For lexical object sets corresponding to primary-key attributes the partic-
ipation constraints on the lexical sides are also 1 ; otherwise the participation
constraints on the lexical sides are 1:*. For each primary-key foreign-key ref-
erence, create a generalization/specialization between the schema’s non-lexical
object sets with the object set of the referenced key as the generalization and the
object set of the referencing key as the specialization. For all other foreign-key
references, create a binary relationship set between the non-lexical object sets
of the two schema’s with 0:1 as the participation constraint on the referencing
side and 1:* as the participation constraint on the referenced side. The reverse
transformation is a standard transformation of an OSM model instance to a rela-
tional database [15]. Since the standard transformation generates all constraints
of S, the constraints of T imply the constraints of S. �

Theorem 4 is overly restrictive for most practical applications, but its restric-
tions allow us to illustrate the process well in a short description. Recently, Tir-
mizi et al. defined a transformation from a relational database directly to OWL
that has fewer restrictions and that also preserves information and constraints
[35]. Further, Tirmizi et al. write their transformation declaratively, using only
Prolog-like rules for specifying their transformation, and thus use only the S, T ,
and Σ components of a general transformation (see Definition 12).

For a WoK, preservation and transformation requirements need not be so
strict. We only need to be able to extract each base fact and represent it in
an ontology. To make a WoK highly meaningful, however, we should recover as
much as is possible of the underlying semantics—the facts, the constraints, and
the linguistic connections. Therein lies the difficulty: some of the underlying se-
mantics in source conceptualizations exist only implicitly and are thus difficult to
capture, and some of the underlying semantics do not exist at all, having been
discarded in the abstraction process of producing the conceptualization. But
therein also lies the research opportunities. Many researchers are endeavoring to
create automatic and semi-automatic procedures to capture richer semantics—
making extensive use of the Π component of Definition 12. And some are making
use of R component of Definition 12 to recover semantics lost in the abstraction

Lecture Notes in Computer Science 13

process. In general, there is an effort to recover as much of the semantics as possi-
ble from many different source genres. For example, researchers have investigated
semantic recovery from relational databases [5, 6], XML [1, 38], human-readable
tables [24, 25, 34], forms [22, 31], and free-running text [10].

For the last part of WoK creation—creating links among knowledge bundles—
we rely on record linkage and schema mapping, also called ontology alignment
or ontology matching. Record linkage is the task of finding entries that refer to
the same entity in two or more data sources, and and ontology matching is the
task of finding the semantic correspondences between elements of two ontol-
ogy schemas. An extensive body of work exists for both record linkage [14] and
ontology matching [21]. Unfortunately, both problems are extremely hard. Gen-
eral solutions do not exist and may never exist. However, “best-effort” methods
do exist and perform reasonably well. For the WoK vision, we can use these
best-effort methods to initialize and update same-as links for object identity
and equivalence-class links for concept identity. Using “best-effort” methods in
a “pay-as-you-go” fashion appears to be the best way to enable a WoK.

5 WoK Usage

The construction of extraction ontologies leads to “understanding” within a
WoK. This “understanding” leads to the ability to answer a free-form query
because, as we explain in this section, a WoK system can identify an extraction
ontology that applies to the query and match the query to the ontology. Hence,
a WoK system can reformulate the free-form query as a formal query, so that it
can be executed over a knowledge bundle.

Definition 14. Let S be a source conceptualization and let T be a target con-
ceptualization formalized as an OSM-EO. We say that T understands S if there
exists an S-to-T transformation that maps each one-place predicate of S to an
object set of T , each n-place predicate of S to an n-place relationship set of T
(n ≥ 2), each fact of S to a fact of T with respect to the predicate mappings, and
each operator of S to an operator in a data frame of T , such that the constraints
of T all hold over the transformed predicates and facts. �

Observe that although Definition 14 states how T is formalized, it does not
state how S is formalized. Thus, the predicates and operators of S may or may
not be directly specified. This is the hard part of “understanding”—to recognize
the applicable predicates and operators. But this is exactly what extraction
ontologies are meant to do. If an OSM-EO is linguistically well grounded, then
it can “understand” so long as what is stated in S is within the context of T—
that is if there is an object set or relationship set for every predicate in S and if
there is an operator in a data frame for every operator in S.

Applications of understanding include free-form query processing, advanced
form-query processing, knowledge augmentation, and knowledge-bundle building
for research studies.

14 D.W. Embley and A. Zitzelberger

Fig. 6. Screenshot of WoK Prototype Showing Free-Form Query Processing.

Example 6. Free-Form Query Processing: Figure 6 illustrates free-form query
processing within our WoK prototype. To “understand” a user query, our WoK
prototype first determines which OSM-EO applies to the query by seeing which
one recognizes the most instances, predicates, and operators in the query re-
quest. Having chosen the Car extraction ontology illustrated in Figures 1 and 3,
the WoK applies the S-to-T transformation highlighting what it understands
(“Find me a honda , 2003 or newer for under 15 grand ”). Figure 7 shows the
result of this transformation—each predicate and each operation is mapped cor-
rectly and the constraints of the OSM-EO model instance all hold. Given this
understanding, it is straightforward to generate a SPARQL query. Before exe-
cuting the query, our WoK prototype augments it so that it also obtains the
stored annotation links. Then, when our WoK prototype displays the results of
the query in the lower-left box in Figure 6, it makes returned values clickable.
Clicking on a value, causes our WoK prototype to find the page from which the
value was extracted, highlight it, and display the page appropriately scrolled to
the location that includes the value. The right panel of Figure 6 shows several
highlighted values, which happens when the user checks one or more check-boxes
before clicking. �

Lecture Notes in Computer Science 15

Fig. 7. Generated Form.

Example 7. Advanced Form-Query
Processing The form in Figure 7 is
for an alerter system for craigslist.org,
which we have implemented. We use
it as feedback to the user that the
query has been understood. As such,
it illustrates not only the ability of an
OSM-EO to read and understand, but
also its ability to write. Note, for ex-
ample the conversion of “15 grand”
to “$15,000” as well as the mnemonic
names for predicates and operations.
Besides providing feedback, this writ-
ing ability also lets the user know
what else the OSM-EO knows about.
A user U then has the opportunity
to adjust the query or add additional
constraints. For example, U may wish
to also know if Toyotas are listed so
long as they are not Camrys. Clicking
on OR for Make and adding Toyota
and then clicking on NOT for Model
and adding Camry makes this possi-
ble. The plus icons show that more op-
erators are available; clicking on the
plus displays them. For example, the user might wish to limit prices with
Between(Car.Price, $11K , $16K). Since the OSM-EO has general recognizers
for prices, U can enter them in any recognizable format.

Example 8. Fact Finding for Research Studies: In addition to “understanding”
queries, it should be clear that “understanding” is also about fact finding. The
fundamental intent of linguistically grounding extraction ontologies is for them
to be able to recognize facts in structured, semi-structured, and unstructured
text. As an example, we can exploit this fact-finding ability to gather facts for
a bio-research study and store them as a knowledge bundle for further analysis
[19]. Gathering tasks for these research studies often takes trained bio-researchers
several man-months of work. So, any significant speed-up extraction ontologies
can provide would be of great benefit in bio-medical research.

Example 9. Knowledge Augmentation: Partial “understanding” is also useful. If
two OSM-EO model instances, M1 and M2, can partially “understand” each
other, they can be merged based on their common “understanding.” M1 can
be seen as having been augmented by the part of M2 that it did not already
“understand” and vice versa. We can exploit “partial understanding” along with
reverse engineering of semi-structured sources to grow ontologies. In our TANGO
project, for example, we take a collection of ordinary tables with overlapping

16 D.W. Embley and A. Zitzelberger

information, reverse engineer them one at a time creating an OSM-EO model
instance for each and then merge each into a growing ontology that represents
the entire collection [34].

6 Conclusion

We have defined a formal foundation for a web of knowledge (a WoK). We
have formalized fundamental WoK components: ontologies (OSM-O) in terms
of decidable first-order logic and extraction ontologies (OSM-EO) linguistically
grounded via data-frame recognizers. We have also formalized a computational
view of a WoK that includes knowledge as a collection of facts embedded in
ontologies, truth as knowledge bound to source documents for provenance and
authentication, and knowledge bundles as consisting of OSM-EO model instances
with valid interpretations super-imposed over source documents. In terms of this
formal foundation, a WoK is a collection of knowledge bundles interconnected
with links that bind together objects with the same identity and concepts with
the same meaning.

Further, we have formally addressed concerns about WoK construction. Trans-
formations map source conceptualizations to target conceptualizations. Informa-
tion and constraint preserving transformations guarantee that target conceptu-
alizations completely and accurately capture source conceptualizations. We have
shown that some source conceptualizations (e.g., specialized, but commonly oc-
curring, nested tables, nested forms, and relational databases) have transforma-
tions guaranteed to preserve information and constraints. We conclude, however,
that many source conceptualizations (ranging from semi-structured sources such
as ordinary human-readable tables and forms to unstructured sources such as
free-running text) require best-effort, pay-as-you-go methods.

Finally, we have formally addressed concerns about WoK usage. When trans-
formations exist that map source predicates and operations to an established on-
tology, the ontology is said to have “understood” the information in the source.
Applications of understanding include free-form query processing, form-based
query processing, fact finding for research studies, and knowledge augmenta-
tion. The purpose of an OSM-EO model instance is to establish understanding.
How well OSM-EO model instances “understand” depends on how well they are
able to “read” and “write” which, like WoK-construction, requires best-effort,
pay-as-you-go methods.

Best-effort methods open the door to interesting and exciting research pos-
sibilities. We have implemented a WoK prototype [18] including some proto-
typical extraction ontologies [16]. We have also done some work on automated
extraction-ontology construction [32, 24, 33, 34] and some work on free-form query
processing [36, 2]. We nevertheless still have much work to do, even on fundamen-
tal WoK components such as creating a sharable data-frame library, constructing
molecular-size ontology snippets, finding ways to more easily produce instance
recognizers, reverse-engineering of many genres of semi-structured sources to
extraction ontologies, enhancing query processing, incorporating reasoning, and

Lecture Notes in Computer Science 17

addressing performance scalability. We also see many opportunities for incorpo-
rating the vast amount of work done by others on information extraction, infor-
mation integration, and record linkage. We cite as relevant examples: KnowItAll
[20], best-effort information extraction [29], C-PANKOW [11], Q/A systems [27],
bootstrapping pay-as-you-go data integration [28], large-scale deduplication [3],
and OpenDMAP [23].

These collective efforts will eventually lead to a WoK—a realization of ideas
of visionaries from Bush [9] to Berners-Lee [7] and Weikum [39]. Establishing
a framework for a WoK by formalizing its basic components and establishing a
firm theoretical foundation as we have done here can help enable this new kind
of information system—a web of knowledge.

Acknowledgements: We would like to thank Cui Tao and Yihong Ding
for coding the transformations of nested tables to OSM-EO model instances,
Oliver Nina and Meher Shaikh for coding the craigslist.org alerter, Stephen W.
Liddle for coding the SPARQL query augmenter and source highlighter, and
many former and current students who have worked on our extraction-ontology
engine.

References

1. R. Al-Kamha. Conceptual XML for Systems Analysis. PhD dissertation, Brigham
Young University, Department of Computer Science, June 2007.

2. M. Al-Mumammed and D.W. Embley. Ontology-based constraint recognition for
free-form service requests. In Proceedings of the 23rd International Conference on
Data Engineering (ICDE’07), pages 366–375, Istanbul, Turkey, April 2007.

3. A. Arasu, C. Re, and D. Suciu. Large-scale deduplication with constraints using
Dedupalog. In Proceedings of the 25th International Conference on Data Engineer-
ing (ICDE 2009), pages 952–963, Shanghi, China, March/April 2009.

4. Aristotle. Metaphysics. Oxford University Press, New York, about 350 BC (1993
translation).

5. I. Astrova. Reverse engineering of relational databases to ontologies. In Proceedings
of the First European Semantic Web Symposium, pages 327–341, Heraklion, Crete,
Greece, May 2004.

6. J. Atoum, D. Bader, and A. Awajan. Mining functional dependency from rela-
tional databases using equivalent classes and minimal cover. Journal of Computer
Science, 4(6):421–426, 2008.

7. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
36(25):34–43, May 2001.

8. P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek. Towards linguistically
grounded ontologies. In Proceedings of the 6th European Semantic Web Conference
(ESWC’09), pages 111–125, Heraklion, Greece, May/June 2009.

9. V. Bush. As we may think. The Atlantic Monthly, 176(1):101–108, July 1945.
10. P. Cimiano. Ontology Learning and Population from Text: Algorithm, Evaluation

and Applications. Springer Verlag, New York, New York, 2006.
11. P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the context: Context-driven auto-

matic semantic annotation with C-PANKOW. In Proceedings of the 14th Inter-
national World Wide Web Conference (WWW205), pages 332–341, Chiba, Japan,
May 2005.

18 D.W. Embley and A. Zitzelberger

12. N. Dalvi, C. Ré, and Dan Suciu. Probabilistic databases: Diamonds in the dirt.
Communications of the ACM, 52(7):86–94, July 2009.

13. Y. Ding, D.W. Embley, and S.W. Liddle. Automatic creation and simplified query-
ing of semantic web content: An approach based on information-extraction ontolo-
gies. In Proceedings of the First Asian Semantic Web Conference (ASWC’06),
pages 400–414, Beijing, China, September 2006.

14. A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios. Duplicate record detection:
A survey. IEEE Transactions on Knowledge and Data Engineering, 18(1):1–16,
January 2007.

15. D.W. Embley. Object Database Development: Concepts and Principles. Addison-
Wesley, Reading, Massachusetts, 1998.

16. D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith. Conceptual-model-based data extraction from multiple-record
web pages. Data & Knowledge Engineering, 31(3):227–251, November 1999.

17. D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems Analysis:
A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

18. D.W. Embley, S.W. Liddle, D. Lonsdale, G. Nagy, Y. Tijerino, R. Clawson, J. Crab-
tree, Y. Ding, P. Jha, Z. Lian, S. Lynn, R.K. Padmanabhan, J. Peters, C. Tao,
R. Watts, C. Woodbury, and A. Zitzelberger. A conceptual-model-based compu-
tational alembic for a web of knowledge. In Proceedings of the 27th International
Conference on Conceptual Modeling, pages 532–533, Barcelona, Spain, October
2008.

19. D.W. Embley, S.W. Liddle, D.W. Lonsdale, A. Stewart, and C. Tao. KBB: A
knowledge-bundle builder for research studies. In Proceedings of 2nd International
Workshop on Active Conceptual Modeling of Learning (ACM-L 2009), Gramado,
Brazil, November 2009. (in press).

20. O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland,
D. Weld, and A. Yates. Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence, 165(1):91–134, 2005.

21. J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, Heidelberg, Ger-
many, 2007.

22. A. Gal, G.A. Modica, and H.M. Jamil. Ontobuilder: Fully automatic extraction
and consolidation of ontologies from web sources. In Proceedings of the 20th In-
ternational Conference on Data Engineering, page 853, Boston, Massachusetts,
March/April 2004.

23. L. Hunter, Z. Lu, J. Firby, W.A. Baumgartner Jr., H.L. Johnson, P.V. Ogren,
and K.B. Cohen. OpenDMAP: An open source, ontology-driven, concept analy-
sis engine, with applications to capturing knowledge regarding protein transport,
protein interactions and cell-type-specific gene expression. BMC Bioinformatics,
9(8), 2008.

24. S. Lynn and D.W. Embley. Semantically conceptualizing and annotating ta-
bles. In Proceedings of the Third Asian Semantic Web Conference, pages 345–359,
Bangkok, Thailand, February 2009.

25. A. Pivk, Y. Sure, P. Cimiano, M. Gams, V. Rajkovič, and R. Studer. Transforming
arbitrary tables into logical form with TARTAR. Data & Knowledge Engineering,
60:567–595, 2007.

26. Plato. Theaetetus. BiblioBazaar, LLC, Charleston, South Carolina, about 360BC.
(translated by Benjamin Jowett).

27. D. Roussinov, W. Fan, and J. Robles-Flores. Beyond keywords: Automated ques-
tion answering on the web. Communications of the ACM, 51(9), September 2008.

Lecture Notes in Computer Science 19

28. A.D. Sarma, X. Dong, and A. Halevy. Bootstrapping pay-as-you-go data integra-
tion systems. In Proceedings of SIGMOD’08, pages 861–874, Vancouver, British
Columbia, Canada, June 2008.

29. W. Shen, P. DeRose, R. McCann, A. Doan, and r. ramakrishnan. Toward best-effort
information extraction. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 1031–1042, Vancouver, British Columbia,
Canada, June 2008.

30. E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz. A practical OWL-DL
reasoner. Journal of Web Semantics, 5(2):51–53, March 2007.

31. W. Su, J. Wang, and F. Lochovsky. ODE: Ontology-assisted data extraction. ACM
Transactions on Database Systems, 34(2):12.1–12.35, June 2009.

32. C. Tao and D.W. Embley. Automatic hidden-web table interpretation, conceptual-
ization, and semantic annotation. Data & Knowledge Engineering, 68(7):683–703,
July 2009.

33. C. Tao, D.W. Embley, and S.W. Liddle. FOCIH: Form-based ontology creation
and information harvesting. In Proceedings of the 28th International Conference
on Conceptual Modeling (ER2009), Gramado, Brazil, November 2009. (in press).

34. Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, Y. Ding, and G. Nagy. Toward
ontology generation from tables. World Wide Web: Internet and Web Information
Systems, 8(3):261–285, September 2005.

35. S. Tirmizi, J. Sequeda, and D. Miranker. Translating SQL applications to the
semantic web. In Database and Expert Systems Applications, pages 450–464, Turin,
Italy, September 2008.

36. M. Vickers. Ontology-based free-form query processing for the semantic web. Mas-
ter’s thesis, Brigham Young University, Provo, Utah, June 2006.

37. W3C (World Wide Web Consortium) Semantic Web Activity Page.
http://www.w3.org/2001/sw/.

38. Y. Weidong, G. Ning, and S. Baile. Reverse engineering XML. In Proceedings of the
First International Multi-Symposiums on Computer and Computational Sciences
(IMSCCS’06), volume 2, pages 447–454, Hangzhou, Zhejiang, China, June 2006.

39. G. Weikum, G. Kasneci, M. Ramanath, and F. Suchanek. Database and
information-retrieval methods for knowledge discovery. Communications of the
ACM, 52(4):56–64, April 2009.

