(will be inserted by the editor)

International Journal on Document Analysis and Recognition manuscript No.

Table Processing Paradigms: A Research Survey

David W. Embley', Matthew Hurst?, Daniel Lopresti®, George Nagy*

s W N =

Received Month DD, 2004 / Revised Month DD, 2004

Abstract. Tables are a ubiquitous form of communi-
cation. While everyone seems to know what a table is,
a precise, analytical definition of “tabularity” remains
elusive because some bureaucratic forms, multicolumn
text layouts, and schematic drawings share many char-
acteristics of tables. There are significant differences be-
tween typeset tables, electronic files designed for display
of tables, and tables in symbolic form intended for in-
formation retrieval. Most past research has addressed
the extraction of low-level geometric information from
raster images of tables scanned from printed documents,
although there is growing interest in the processing of
tables in electronic form as well.

Recent research on table composition and table anal-
ysis has improved our understanding of the distinction
between the logical and physical structures of tables, and
has led to improved formalisms for modeling tables. This
review, which is structured in terms of generalized par-
adigms for table processing, indicates that progress on
half-a-dozen specific research issues would open the door
to using existing paper and electronic tables for data-
base update, tabular browsing, structured information
retrieval through graphical and audio interfaces, multi-
media table editing, and platform-independent display.

Key words: Document analysis — Table recognition —
Table understanding

1 Introduction
1.1 Why tables?

Tables are the prevalent means of representing and com-
municating structured data. They may contain words,
numbers, formulas, and even graphics. Developed origi-
nally in the days of printed or handwritten documents
(indeed, tables may pre-date sentential text [47]), they

Correspondence to: Daniel Lopresti

Computer Science Department, Brigham Young University, Provo, UT 84602

Intelliseek Applied Research Center, Pittsburgh, PA 15213

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015

Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180

have been adapted to word-processors and page compo-
sition languages, and form the underlying paradigm for
spreadsheets and relational database systems.

Some common examples of data usually presented in
the form of tables are calendars, rail and flight sched-
ules, financial reports, experimental results, and grade
reports. It is noteworthy that the need to reformat and
analyze the 1890 U.S. Census forms launched the punched-
card “tabulator” industry. Electronic computers were
commissioned during WWII for computing ballistic ta-
bles. The major commercial applications envisioned for
computers in the 1950’s centered on database manip-
ulation, which remains the mainstay of business data
processing.

The other common representation for structured data
is a list. If we consider ordered lists analogous to vectors,
then we can think of tables as analogous to matrices.
Unlike vectors and matrices, lists and tables may con-
tain non-numeric data items. Graphs are required for
relationships more complex than can be represented by
tables and are used primarily for inter-document struc-
ture. Trees are often used to represent intra-document
structure.

Note that not all tables can be easily interpreted us-
ing only common sense: consider, for instance, the Pe-
riodic Table of the Elements, which requires substan-
tial domain knowledge to understand (see Table 1). It is
exceedingly easy to come up with other examples that
are challenging even from a human perspective. Rather
than belabor this point, for the purposes of this survey
we choose instead to focus on the kinds of tables that
researchers have addressed with some degree of success.

Table processing paradigms are part of the older field
of document image analysis [67]. A common objective
of finding and delimiting tables, equations and illustra-
tions, is to clear the path for optical character recog-
nition (OCR) or, if the document is already in elec-
tronic form, for text analysis. Tables are between text
and graphics with regard to the relative proportion of al-
phanumeric symbols, linear components and white space.
If the text is sufficient for the purpose at hand, then all
other document components can simply be either elim-

Table 1. The Periodic Table of the Elements.

David W. Embley et al.: Table Processing Paradigms: A Research Survey

H 1 He 2
1 | Hyorogen Hlium
1008 008
Li 3|Be 4 B s|C N 7O s|F 9|Ne 10
2 | tithium | Beryttium Boron Cabon | Nitrogen | Oxygen | Fluorine Neon
son | oo wen | zou | wor | e | mee | 20m
Na 11|Mg 12 Al 13[Si 1a|P 15|S 16|Cl 17|Ar 18
3| sodum | Magnesium Aluminum Slioon | hosphorous| sufur | Chiorine | Argon
200 | 235 2oz | oss | wom | s | wmass | e
K 19|Ca 20 Sc 21|Ti 22|V 23|Cr 2a|Mn 25|Fe 26|/Co 27|Ni 28[Cu 29[Zn 30 Ga 31|Ge 32(As 33(Se 3a|Br ss|Kr 3
4 | Potasiom | cacum Scandum | Titwium | Vendium | Cvomium | Menganese | won | cobar | nickd [coer | zinc Galium | Germanium | Avseic | seenium | Bromine | Krypton
0w | w00 aaoss | ares | sooe | sioss | seoms | ssew | sesms | sees | s | s corz | et | mez | mews | mes | e
Rb 37|Sr 38 Y 39|Zr 40[Nb s1[Mo 42[Tc 43|Ru 44|Rh ss|Pd 46[Ag 47[Cd 48 In 49|Sn s0|Sb s51|Te s2|l s3|Xe sa
5 | rusicum | swonium Vuium | Zircorium | Niobium Technetium | Rutherium | Rhogum | patladiom | siver | cadmium indum [Tin | Animony | Teluriom | todne | xenon
85468 87.62 88.906 91.224 92.906 9594 (98) 10107 102.906 106.42 107.868 112411 11482 11871 12175 127.60 126.905 13129
Cs ss|Ba s6 Lu 71|Hf 72|Ta 73|W 74|Re 75|Os 7e|lr 77|Pt 78|Au 79|Hg so Tl 81|Pb s2[Bi s3[Po sa|At ss|Rn se
6 | comm | eaim Luctiom | Hatrium | Tadum | Tungsen | Rheium [Osmiom [widum | etanem | cod | merouy Traium | Lead | eioman | Polonium | Asaine | Redon
12005 | 137327 waser | 17mas | 1soss | s | weaor | a2 | 1:z2 [10s0s | 10see7 | 20080 e | oz | zes | e 1) @)
Fr s7|Ra es Lr 103|Rf 104|Db 105|Sg 106|Bh 107|HsS 108|Mt 109
7 | Frenciom | Radim L Dunium | Seborgium | Borvium | Hessum [weinerium
@y | 2o @0 | e | e | e | e | esm | e
La s57|/Ce s8|Pr s9|Nd e0|Pm 61/Sm 62|Eu 63|Gd 64|Th e5|Dy es|HO 67|Er e8[Tm eo[Yb 70
Lanthanum Cerium tyr Neodymium | Promethium | Samarium | Europium | Gadolinium | Terbium | Dysprosium | Holmium Erbium Thulium Yiterbium
18905 | 1ons | woos | ws2e | e | 03 [wsross | usr2s | sseexs | weso | wssss | seras | issem | imoe
Ac 89|Th 9o|Pa 91U 92|Np 93|Pu 94/Am 95/Cm 96|Bk 97|Cf 98|ES 99|Fma1oo|Md101|NoO 102
Actinium Thorium | Protactinium | - Uranium Neptunium | Plutonium | Americium Curium Berkelium | Californium | Einsteinium | Fermium Nobelium
210 | 2208 | 20 | 2moee | avow | ew | o | em | em | ey | e | esn | esm | eso

inated or preserved only in some image format. That is
indeed adequate for many keyword-based document re-
trieval applications.

However, if some or all of the essential information
resides in tables, then the tables themselves must be pro-
cessed. There is little published research on OCR for ta-
bles. Current commercial OCR systems are hampered by
the non-uniform spacing, multiple typefaces and sizes,
rulings, and lack of language context found in tables.
Without special provisions for tables, the OCR format
preprocessor may simply attempt to decolumnize them.
Some OCR products offer a zoning feature that marks
and avoids table regions. More sophisticated systems at-
tempt to transform tables, without further analysis, into
the table format of the target representation (like Mi-
crosoft Word), but the results tend to be unreliable.
None of these alternatives are satisfactory for table-rich
documents: hence this special issue.

1.2 Rationale for this review

It appears likely that the automated or semi-automated
interconversion of tables from one medium to another
(e.g., from paper or electronic text to a spreadsheet,
database, or query-answer system), or from one format
to another in the same medium (e.g., for different display
sizes) will prove desirable in a variety of computing envi-
ronments. In some applications it may be advantageous
to query and reference tabular data without regard to
the underlying medium or form.

Reflecting this growing interest, a number of sur-
veys on table processing have appeared over the past
several years [37,47,62,63,97]. The review by Lopresti
and Nagy [62] aims at exploring the diversity and extent
of the table world, and the many areas where further

progress is needed to make the transition between tra-
ditional tables and digital presentation of structured in-
formation. A large collection of examples is included to
illustrate the difficulty of both human and machine un-
derstanding of many tables. As an experiment, the entire
survey was converted into tabular form for the version
of the GREC proceedings later published as a separate
book [63].

Handley’s survey on document recognition [37] has
sections on table recognition and forms recognition with
accurate and detailed descriptions of many previously
published algorithms.

The recent survey by Zanibbi, Blostein, and Cordy
includes references to much new material, organized ac-
cording to a view of table recognition as the interac-
tion of “models, observations, transformations and in-
ferences” [97]. Work in the area is partitioned according
to the methods used for classification (e.g., decision trees
and neural networks) and segmentation (e.g., clustering
and grammars). This article also has a useful section on
performance evaluation.

Surveys of the information-organizational aspects of
tables are included in Hurst’s PhD thesis [47] and a re-
cent paper by Embley et al. [28]. At the time of this writ-
ing, another extensive bibliography, compiled by Hurst,
could be found on-line.!

The present paper is an attempt to review not only
what people have actually done with tables, but also
what they would like to do with them, what they can-
not do, and what and how they think about them. Our
object is to collect information about the composition,
use, interpretation and understanding of tables that may

! See http://www.cogsci.ed.ac.uk/~matth/research/
tables/research /bibliography/.

David W. Embley et al.: Table Processing Paradigms: A Research Survey 3

prove useful in the development of tools for manipulating
tables presented in a variety of media.

1.3 Guide to the remainder of this paper

Our organizing principle is to attempt to orthogonalize
the various issues, so as to be able to make independent
decisions regarding algorithm development.

We begin by first considering the fundamental ques-
tion: “What is a table?” Rather than get hung up on the
complexities of what is certainly a deep and debatable
issue, we take a pragmatic approach to our definition
of tabularity, informed largely by what researchers have
already been able to accomplish in the area of table un-
derstanding.

To lay the groundwork for the kinds of tables we shall
consider, we then proceed to describe half-a-dozen ap-
plications that would result from new developments in
table processing. This is followed by a brief overview of
existing commercial approaches to the problems of table
and forms processing.

We then discuss input media under the headings of
“electronic” and “paper.” The former can be further sub-
divided into plain ASCII and page-descriptor represen-
tations. Electronic tables such as those found in word-
processing documents, e-mail, PDF files, and the Web,
already have the content of the leaf cells in symbolic
form, so OCR is not necessary, but the structure is sel-
dom available in a convenient form. Tables on paper
must be optically scanned for any type of automated
processing.

The bulk of our paper is structured in terms of par-
adigms for table processing. Here we outline the ma-
jor steps as a series of generic tasks to be performed.
Most, but not all, past work can be cast in this frame-
work, which provides a foundation for describing and
discussing research results to this point in time.

In the last section, we summarize potential research
directions.

2 Tables
2.1 What is a table?

Although many consider the idea of a table to be sim-
ple, careful study (e.g., [63]) reveals that the question
“What constitutes a table?” is indeed difficult to an-
swer. Several researchers have provided definitions. Pe-
terman et al. [71], for example, state that “tables have
a regular repetitive structure along one axis so that the
data type is determined either by the horizontal or verti-
cal indices.” These definitions, however intuitive, do not
provide a theoretical basis from which to work.

As recognized by Tijerino et al. [84], relational tables
[21] do provide a theoretical basis for tables. Axiomati-
cally, relations in a relational database can be considered
to be tables in a canonical form. Using a standard, for-
mal definition of a relational table [66], [84] shows how
to define a canonical table as follows. A schema for a

canonical table is a finite set L = {L, ..., L} of label
names or phrases, which are simply called labels. Corre-
sponding to each label L;, 1 < i < mn, is a set D;, called
the domain of L;. Let D = D U ... U D,,. A canonical
table T is a set of functions T = {t1, ..., t;,} from L
to D with the restriction that for each function t € T,
t(L;) € D;, 1 <i < n.

As is common for relational databases, we can display
tables in two dimensions. When we display a table two
dimensionally, we fix the order of the labels in the schema
for each function and factor these labels to the top as
column headers. Each row in the table constitutes the
domain values for the corresponding labels in the column
headers. Thus, for example, we can display the canonical
table:

{{(LAST NAME, Smith), (INITIAL, J),
(BIRTH DATE, 12/3 1988)},

{(LAST NAME, Barr), (INITIAL, K),
(BIRTH DATE, 25/5 1975)}}

as Table 2 shows. Displayed in this form, a canonical
table is simply called a table. Whether any format in
which this same information may be displayed (e.g., as
the set of sets illustrated above) should be called a “ta-
ble” may be debatable. To avoid the argument, whenever
there may be doubt, we can refer to the information as
table-equivalent data [84]. Displayed in its usual way as
depicted in Table 2, this information would certainly be
called a table.

Table 2. A simple canonical table.

LAST NAME | INITIAL | BIRTH DATE
Smith J 12/3 1988
Barr K 25/5 1975

One consequence of this definition is that we can for-
mally investigate the boundary conditions constituting
degenerate table-equivalent data. When there is only one
column, the table is more commonly called a list. When
there are no domain-value rows, we may think of the
empty table as a form with slots to be filled in. When
there is only one row, we may think of the table as a
filled-in form. If a label is missing (e.g., if either LAST
NAME or INITIAL is missing), we may think of the
label as being implicit. Common sense (e.g., the names
look like names and the initials look like initials) and
context (e.g., BIRTH DATE usually implies people with
names) allow us to reconstruct missing labels, or at least
synonymously equivalent missing labels. If all labels are
missing, self-identifying data may allow us to reconstruct
all implicit labels. If all labels are missing and all domain
values are numbers, we think of the table as a matriz.
Further, if a matrix has only one row or one column, we
think of it as a vector, as noted previously.

2.2 What is table understanding?

Another consequence of the formal definition for tables
is that it leads directly to a formal definition of table

4 David W. Embley et al.: Table Processing Paradigms: A Research Survey

understanding. A table is understood if we can recover
the set of labels L = {Ly, ..., L}, the set of domains
D = {D,, ..., D,}, and the set of functions T = {1,
.ey tm} that each maps L to D. Often, we use a less
inclusive definition that does not require us to identify D
and the individual domains, Dy, ..., D,, that constitute
D. In this case recovering the label-value pairs for each
function ¢; € T is sufficient. Thus, for example, Table 2
is understood if we can recover the set of functions:

{{(LAST NAME, Smith), (INITIAL, J),
(BIRTH DATE, 12/3 1988)1},

{(LAST NAME, Barr), (INITIAL, K),
(BIRTH DATE, 25/5 1975)}}

Experiments have shown that even human “experts”
do not always agree on the sets of label-value pairs for
a table [41]. Thus, we should not be surprised that au-
tomating table understanding is difficult.

Although the task may be challenging, the formal
definition does tell us exactly what we have to do to au-
tomate table understanding: we must recover the label-
value pairs from the representation of a given table. To
formalize this process, we can adopt the ideas from [36],
which proposes the use of an ontology for automated
table understanding. Since “an ontology is a formal, ex-
plicit specification of a shared conceptualization” [34],
a table understanding ontology formally and explicitly
specifies a shared conceptualization of table understand-
ing. Basically, the idea is to ontologically capture all the
relevant representational knowledge about a table (the
input ontology) and transform it algorithmically to sets
of label-value pairs (the output ontology).

Figure 1 shows a graphical depiction of the output
ontology for canonical tables. Later in this paper, when
we describe table processing paradigms, we will show
how to represent input tables ontologically and explain
how the paradigms can all be thought of as transforming
an input table captured ontologically into an output on-
tology such as the one in Figure 1. In the diagram, we use
boxes to represent object sets, solid boxes for abstract
items represented by object identifiers, and dotted boxes
for concrete items represented by value strings. Thus, for
example, Table in Figure 1 is a set of table identifiers
representing the tables of interest, and Label is a set of
labels such as LAST NAME or BIRTH DATE. Hyper-
edges connecting object sets represent relationship sets.
N-ary edges have a diamond; binary edges do not have a
diamond. Edges may be functional, denoted by an arrow-
head on their range side. Thus, the relationship between
tuples and tables is functional: each tuple (identified by
a tuple identifier) belongs to one and only one table. The
absence of an arrowhead allows an object to participate
with many other objects. Thus, in the n-ary relationship
set, a tuple may have many label-value pairs. Additional
constraints may further restrict object- or relationship
sets. Thus, we can force the conceptualization to corre-
spond to the formal definition of a table, which requires a
distinct and equal set of labels for every tuple belonging
to a particular table.

Table

The Label set for each Tuple
of a Table must be identical.

Each Tuple must have distinct Labels.

Fig. 1. An output ontology for tables [36].

2.8 Generalizing tables and table understanding

A further consequence of the formal definition for tables
is generalizations of tables and table understanding. In-
deed, some researchers have offered generalizations [47,
84]. One way we can formally extend the definition is
by defining nested labels [47]. We can alter Table 2, for
example, by nesting LAST NAME and INITIAL under
EMPLOYEE and BIRTH DATE under PENSION STA-
TUS. For nested tables, we can use a nesting structure
to describe the more complex attribute value pairs.

Below we show the nested augmentation of Table 2
using the notation of [47]. Categories are made up of min-
imal sequences of dependent cells. Thus in the extended
version of Table 2, as EMPLOYEE has no discriminative
power other than defining LAST NAME and INITIAL,
it forms part of the values in that category. The reading
set describes the subset of the cartesian product of the
categories that the syntax of the table allows. A reading
path, then, is a subset of the reading set with the specific
data category removed.

Categories:

{EMPLOYEE.LAST NAME, EMPLOYEE.INITIAL},
{PENSION STATUS.BIRTH DATE}, {Smith, Barr},
{J, K}, {12/3 1988, 25/5 1975}

Reading Set:

{{EMPLOYEE.LAST NAME, Smith,
PENSION STATUS.BIRTHDATE, 12/3 1988}, ...}

Table 3 shows a more complex kind of nesting. Two
dimensions are used to index a third data category.2 The
two dimensions are Position {First, Second, Third} and
nucleotide {U, C, A, G}. Understanding the full label (or

2 Here the first and third categories are laid out vertically,
and the second category horizontally. Many other possible
permutations exist.

David W. Embley et al.: Table Processing Paradigms: A Research Survey 5

reading path) Second Position C as a complex object,
not a simple string, is required if we are to interpret
the table against a model of the domain. This table is
described as follows:

Categories:

{First Position, Second Position,
Third Position},

{Nucleotide.U, Nucleotide.C, Nucleotide.A,
Nucleotide.G}

{Phe, Ser, Tyr, Cys, Leu, Stop, Trp, Pro,
His, Arg, Gln, Ile, Thr, Asn, Lys, Met,
Val, Ala, Asp, Gly, Glu}

Reading Set:

{{First Position, Nucleotide.U,
Second Position, Nucleotide.U,
Third Position Nucleotide.U, Phe}, ...}

Table 3. The Genetic Code: a mapping from triples of nu-
cleotides (codons) to the amino acids they encode.

Nucleotide
First Second Position Third
Position U C A G Position

Phe Ser Tyr Cys U

U Phe Ser Tyr Cys C
Leu Ser Stop Stop A

Leu Ser Stop Trp G

Leu Pro His Arg U

C Leu Pro His Arg C
Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

A Ile Thr Asn Ser C
Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

G Val Ala Asp Gly C
Val Ala Glu Gly A

Val Ala Glu Gly G

Another way we can formally extend the definition is
by defining collections of tables, in which case we have
the equivalent of a relational database [66]. Further, we
can reverse engineer (e.g., [20]) a collection of tables into
a conceptual model (e.g., the entity-relationship model
[18]). In a similar vein, we can consider reverse engineer-
ing a single table or a group of related tables into an
ontology and populate them as described in [84]. Using
this technique, Figure 2 shows the ontological represen-
tation for Table 2 that has LAST NAME and INITIAL
nested under EMPLOYEE and BIRTH DATE nested
under PENSION STATUS, and Figure 3 shows the on-
tological representation for the nested Genetic Code in
Table 3.

In Figure 3 the black triangle denotes an aggregation
of the elements connected to its base into the aggregate
connected to its apex, while the open triangles denote

EMPLOYEE

PENSION STATUS

i Aggregate i Acid

ESecondE i Third
; Position ;

i First
i Position :

U C A G

Fig. 3. An ontology for Table 3.

ISA relationships between specialization elements con-
nected to their bases and generalization elements con-
nected to their apexes. The symbol ‘@’ in an open tri-
angle denotes a partition among the specialization ele-
ments with respect to the generalization element. The
large black dots represent individual elements, thought
of as singleton sets in the partition.

It is important to realize that we are using ontologies
in two different ways in this discussion: (1) ontologies to
represent understood tables (Figures 2 and 3) and (2) on-
tologies to represent input and output descriptions of ta-
ble knowledge (Figure 1). Although much too complex
to depict and describe in this survey, [27] gives an on-
tology that formally describes ontologies that represent
understood tables. In this sense, ontologies that repre-
sent output descriptions are meta-ontologies. Indeed, the
output ontology in Figure 1 is a meta-description of a
canonical relational table.

2.4 Models of tables

Not all table processing research aims at table under-
standing. For example, some may just want to convert a
scanned table into an editable Microsoft Excel or Word
table that has no meaning except to a human. A substan-
tial amount of table processing to date has not attempted
to interpret tables; rather, recovering the grid and cell
contents are considered the target. The researchers in
question did formulate adequate models based on their

6 David W. Embley et al.: Table Processing Paradigms: A Research Survey

intended goals and their views of what constitutes a ta-
ble even though these models are largely insufficient for
the task of table understanding.

Many different models of tables have been proposed.
This variation is generally in line with the particular
tasks addressed by the systems described or the particu-
lar philosophy of document encoding. Low level models
use line-art [31], white space [78], and character distri-
butions [51] as key features to drive analysis. Grid based
models include [60] and [80].

Another class of table model is that which describes a
specific table. This is not only a syntactic constraint but
also a semantic constraint — the model fixes the labels of
the positions in the data area of the table, thus obviating
the need to interpret the labels either syntactically or
semantically. The application context is one in which a
known table (or small set of tables) is input many times
and requires interpretation [80].

It is also possible to devise more general systems
that can be customized to specific families of recursively
or iteratively generated structured documents, including
tables. Enhanced Position Formalism (EPF) is a two-
dimensional grammar able to describe document layouts
for sheet music, mathematical equations, and tables [24,
25]. Although the examples presented in this paper are
forms rather than tables, it should be possible to com-
pile EPF grammars for specific families of tables. The
authors claim that the grammars can be readily com-
bined, for example to recognize tables of mathematical
equations. The method was applied to several thousand
degraded 19th Century military documents with similar
layout.

The database model is an appealing analogy to hu-
man authored tables. Green uses this analogy to refer to
the printed table as printed manifestations of relational
information [30]. He then continues by describing the
complexities of the relational model in terms of joining
and merging multiple relations. This effectively appeals
to the implicit semantics behind the join as an analogy
to the complex categorical structure present in all but
the most trivial uniform grid table.

The Semantic and Representation Detection (SRD)
framework is proposed for combining information from a
domain ontology, and standard-unit ontology, and table
metadata (possibly derived from surrounding context)
into relational tables for populating a database [4]. It
is not clear from the paper whether the SRD has been
implemented.

Often the input format to a table processing system
limits the complexity of the tables, requiring a model of
a suitably limited scope. Pyreddy and Croft characterize
tables in a typed-line-manner due to the limitations of
an ASCII representation [73].

Moving from low-level structural models to more ab-
stract models we can see the influence of table editing
systems. Wang’s is perhaps the most well known model
which captures both logical and physical aspects [88].
She describes the Improv system [23] as being perhaps
the first system which provided a clear separation of log-
ical and physical aspects.

Extending some of the concepts presented in [88],
Hurst develops a characterization of tables as document
objects in context [47], recognizing the potential for sur-
rounding text to impact the understanding of the table.
If the related text informs the reader that “the values in
the second column are the median value,” we read the
data quite differently to the case where we have been
told “the values in the second column are the maxima.”

Finally, an account of table models is not complete
without mentioning research in the field of psycholin-
guistics. Wright describes the understanding of the or-
ganizational principles in tables [95], and Guthrie et al.
consider the nature of categories [35].

3 Applications of Table Processing

In this section we separate applications into as many
discrete categories as possible. It may or may not be
advantageous to develop a table-processing framework
that can handle several of these applications in a unified
way.

3.1 Large-volume, homogeneous table conversion

An example of an application in this area is the work
done at AT&T/Lucent on the conversion of telephone
billing statements to a usable form [80]. Although the
tables may vary in format and content, all contain sim-
ilar types of data that is compatible with an existing
database. The database itself can be used to facilitate
and validate data extraction from the tables [29]. This
application is very similar to forms processing and could
probably make use of advanced existing commercial soft-
ware developed for this purpose.

The authors of the above paper emphasize the impor-
tance of a well-designed Graphical User Interface (GUI)
to allow customization of the table-processing tools for
specific formats. The use of table templates eliminates
the need for elaborate structure hypotheses, and the suc-
cess of the approach depends mainly on thorough pre-
processing and accurate OCR.

3.2 Large-volume, mized table conversion

This is a preliminary step for data mining from sources
that are available only as paper or electronic tables.
This application may require table spotting and table-
similarity detection in addition to content and structure
extraction.

Note that a successful approach to table understand-
ing could be used to facilitate what is regarded as tradi-
tional information retrieval. The answers to certain kinds
of queries seem most naturally expressed in tabular form.
Consider, for example, the following ad hoc topic (#219)
from the TREC 4 evaluation [85]:

“How has the volume of U.S. imports of Japanese
autos compared with exports of U.S. autos to
Canada and Mexico?”

David W. Embley et al.: Table Processing Paradigms: A Research Survey 7

A document relevant to such a query will likely contain
a table comparing auto imports/exports over time or by
country.

3.3 Individual database creation

This is a filing application for data that arrives in e-mail,
by post, or is discovered on the Web [94]. The individual
sets up some goal-oriented digital filing system and pop-
ulates it with items that arrive at unpredictable times.
The tables are processed either as they arrive, or batched
for more convenient interactive processing. An important
consideration here is minimization of the original set-up
time and level of skill required.

3.4 Tabular browsing

Interactively extracting specific information from a large
table is somewhat similar to addressing queries to a data-
base with a language like SQL. Wang gives examples
where the results of a query consist of highlighting spe-
cific cells in a table. She also mentions the possibility
of creating subtables in response to a query, which is
similar to view generation in a database [88].

3.5 Audio access to tables

In the EMU project [81], it may be desirable to detect
and access newly received tables in e-mail by telephone.
Access may take the form of an abbreviated reading or
summarization of the table, a query-answer interface di-
rectly to the table, or conversion of the table to a data-
base and access through an existing audio-database in-
terface (if one were to exist). A protocol for direct access
to tables was devised for “talking books” for the blind
[76]. It requires repeating the appropriate table heading
before each content cell is voiced, which can be a slow
and painful process.

3.6 Table manipulation

Existing tables often need to be reformatted, combined,
or modified for specific target audiences. Such manip-
ulation may take place at the level of format, using a
word processor, page-composition language, or spread-
sheet, or at the deeper level of the underlying database.
The latter can use independently-developed facilities for
view generation and database output formatting. This
application is mentioned in [48,88].

3.7 Table modification for display

Retargeting Web page displays for small-screen devices
like personal digital assistants (PDA’s) and cell-phones
has assumed increased urgency and importance with the

deployment of fast wireless connectivity. A recent re-
view [2] lists four alternative techniques: hand recod-
ing, trans-coding (automatic replacement of HTML tags
by device- and target-specific tags), re-authoring based
on automatic layout analysis, and re-authoring based on
natural language processing (NLP). Re-authored pages
can be presented hierarchically, with a root node consist-
ing of a table-of-contents with links to detailed content.
Although no table-specific techniques are given, some of
the methods we describe are referenced.

Interestingly, many if not most Web pages are con-
structed with the HTML <table> construct (just as fig-
ures in Microsoft Word are often laid out using its table
facility). The real problem with layout analysis on Web
pages is that everything floats. The geometry is not fixed
until the page is displayed by a particular browser, with
specific settings and window size. Nevertheless, HTML
preserves some relative ordering. This is exploited in [3]
to re-author an HTML list. Further suggestions for gen-
eralizing the notions of precedence, proximity, promi-
nence, and preference for interpreting content flow in
HTML documents are presented in [2]. As seen below,
Portable Document Format (PDF) documents share this
problem of lack of association between content and form,
therefore some of the same techniques may be useful for
retargeting them to different formats.

In addition to accommodating small-format displays
such as a PDA, one may wish to modify a page-width
table to single-column width. Additional headers must
be inserted to divide long tables to fit pages. A research
issue here that may draw on database concepts is the
division of one or more tables into a set of equivalent
tables (cf. “Large Tables” in [88]).

We believe that the extraction of tables from HTML
documents is evanescent compared to the conversion of
paper documents because XML-based schemes are con-
ceived with the goal of assuring machine interpretabil-
ity [75].

3.8 Information extraction from tables

Information extraction from tables is perhaps analogous
to the task of the same name applied to sentential text.
The narrow definition requires a target schema and re-
quires that arbitrary input (generally of some standard
encoding) be transformed into instances of the schema.
Examples of systems that fit this definition include [60,
80,31,22,28]. Each of these systems works with varying
definitions of tables and varying data formats.?

A wider definition without a fixed schema may be
analogous to message understanding and represents per-
haps the ultimate goal of table understanding.

It is perhaps too early to report any statistics rep-
resenting the state of the art for this task. Part of the
challenge is to provide a standard data set against which
systems may be tested and results compared.

8 One challenge that document-based tasks face is the
added burden of standardizing input into analytical compo-
nents. One could argue that information extraction from sen-
tential text must only standardize on the object language.

8 David W. Embley et al.: Table Processing Paradigms: A Research Survey

An interesting approach adopted by many industrial
solutions uses the schema to drive the segmentation of
the document and the recognition and interpretation of
the tables. Knowing that one is looking for a financial
table of a certain sort, and the form of likely labels and
values, is invaluable knowledge even at the OCR and
text blocking stage.

3.9 Ontology learning from tables

Ontology learning (e.g., [65]) has recently received con-
siderable attention because of the emergence of the Se-
mantic Web. The Semantic Web requires an abundance
of ontologies, and creating them by hand is seen as a
barrier preventing widespread use of the Semantic Web.
In an attempt to break through this barrier, researchers
have begun to build systems to “learn” ontologies from
existing documents. Learning ontologies from sentential
text, however, has proven to be difficult. Learning on-
tologies from tables may be more fruitful.

Thus, a relatively new application for table process-
ing is the consolidation of information from multiple
tables (usually downloaded from the Web) to generate
domain-specific ontologies. The TANGO project [84] is
an initial effort to use table analysis for generating on-
tologies. At least partially automating the preparation
of such bodies of factual information may help pave the
way towards a realization of the Semantic Web.

4 The Commercial Landscape

The majority of current table applications, as described
in this paper, can be found in academic and other re-
search contexts. However, like any advanced technology,
a number of commercial systems are now available that
either offer direct table processing capabilities, or which
rely to some extent on table understanding technology.

Low-end OCR systems, such as ScanSoft’s Omni-
Page [79], provide table location and segmentation fea-
tures. These are generally targeted at explicitly gridded
tables (with some packages permitting user guided anal-
ysis of non-gridded tables). Although the location of ta-
bles in such systems is generally adequate, market forces
are such that the appearance of high-quality table seg-
mentation features for arbitrary document input is un-
likely.

Companies providing archival and document conver-
sion services, such as XML Cities [96], recognize the im-
portance of capturing table data — as well as the need
to index this data appropriately. The work-flow around
these services permits the creation of new matching rules,
as well as the validation and correction of conversion by
a human operator, thus providing the required quality
level demanded by the customer.

In application services environments, where table un-
derstanding can be customized by domain to include
constraints that enable high quality results with almost
complete automation, the medical insurance domain is
perhaps one of the most successful. Insiders Information

Management GmbH [49] and TCG Informatik AG [83],
for example, both adopt this approach.

Information on the quality of commercial systems is
not generally available. In the low-end OCR market, the
input is so varied that claims — if available — would be
hard to interpret. Where the work-flow involves a human,
the quality is generally controlled according to individual
customer needs through customization and/or validation
processes.

A form, as opposed to a table, is a sheet of paper
with labeled boxes used for information collection: the
items specified by the labels are written or typed into
the boxes, then the form is returned to the originator
and the relevant information is extracted. Common ex-
amples of forms are tax returns and catalog order forms.
The advent of graphic printers allowed printing forms on
demand: forms intended for the same purpose became
diversified. The rulings and boxes lost their importance.
In document analysis the distinction between forms, in-
voices, and business letters is fading.

Forms processing is now a major industry. Large ap-
plications, such as medical claims processing, state in-
come tax, insurance and retirement systems require con-
version of several hundred thousand forms per day. In
many such applications most forms are filled out by hand.
The similarities between table and form processing are
emphasized in [87] and [13]. Other notable work on forms
includes [5] and [69]. Continuing efforts to pass pro-
cessing costs down to the end users will cause many of
these mass form-processing applications to be migrated
to the Web. Electronic forms are based on HTML, JAVA|
Active-X, or XML.

Few forms processing systems used in production en-
vironments are described in the research literature. An
exception is smartFIX, which evolved from ten years’ of
research at the German Artificial Intelligence Research
Center (DFKI), and is now used by a dozen medical in-
surance companies to process tens of thousands of bills
daily [54-56]. The system is able to classify about 60
types of documents (hospital bills, prescription drug bills,
dentist’s bills), and extracts over 100 different types of
information from them (about 20 items per document
on average). It relies on large databases of customers,
products, and price schedules, and has elaborate mod-
els of the each customer’s information flow, accuracy re-
quirements, audit practices, training schedules, and dis-
tributed computational resources. Although constraint
satisfaction methods are incorporated, every extracted
field is subject to human verification. About 75% of
the fields are labeled “safe,” with less than 1 error per
1000. The major source of inadequately processed fields
is OCR error. It is reported that the system saves 65%
to 75% time over conventional manual data entry.

So far there is no comparable table-processing in-
dustry, but some service bureaus do offer conversion of
printed tables to electronic form.

David W. Embley et al.: Table Processing Paradigms: A Research Survey 9

5 Input Media and Formats

We consider tables that are presented in two different
media: electronic and paper. We further subdivide the
former based on encoding schemes. The net result is
three (broad) classes of input tables:

1. ASCII file with only “pure” linguistic content and
character-level spacing.

2. Page-descriptor file (Word, WTEX, HTML, PostScript,
PDF) with linguistic content, and refined formatting.

3. Bitmap file of an image of a table with white space
around it.*

5.1 Tables presented in electronic format

Tables in plain text format may appear in e-mail or on
certain kinds of Web pages. The structure of the table is
represented only by ASCII symbols for space (blanks),
tab characters, and carriage returns. Occasionally print-
able ASCII symbols are used to show horizontal and ver-
tical rules.

Electronic tables not intended for printing tend to be
smaller and simpler than paper tables. The amount of
detail that can be displayed on a typical monitor is less
than one tenth of what can be seen on a typeset page.

Mark-up languages like SGML, HTML, and XML
have special conventions for tables, but there is no as-
surance that table tags are not abused or misused. Page
composition languages have elaborate facilities for for-
matting tables, like TROFF Tbl [61] and the XTEX table
and array environments [59]. Many other table composi-
tion systems are surveyed in [88].

Microsoft Word has a table formatting subsystem
and provides interconversion between tables in plain-
text, Word-table, Rich Text Format (RTF), and Excel
spreadsheets. FrameMaker offers PDF for posting tables
on the Web in non-editable form, and XML for applica-
tions where the structure needs to be accessible. VXML
is a proposed general-purpose format for audio access to
Web documents.

Tables may also be reproduced in any raster image
format, such as TTF or GIF, or rendered directly in Post-
Script [74]. Although directly-generated tables in image
format may look superficially like scanned paper tables,
they are not affected by noise or skew.

The Portable Document Format (PDF) is one of the
most widely used formats for document representation.
PDF files can be readily transformed to and from Post-
Script, and are relatively small due to embedded com-
pression. PDF can be used for both computer gener-
ated documents (conversion options are built into many
word-processing systems) and for scanned pixel maps in
black-and-white, gray scale, or color. It also has facilities
for searching, indexing, annotation and limited editing,

* We assume that dynamic binarization, deskewing, and
noise removal have already been accomplished by standard
image processing methods, and also that a black-box OCR
system — for print, handprint, or handwriting as required — is
available.

but does not encode document structure below the page
level: the file is simply a list of low-level objects like
groups of characters, curves, and blobs, with associated
style attributes like font, color, and shape. While there
are several on-going research projects on recovering log-
ical structure from PDF documents, we have found no
research specifically on PDF table recognition.

PDF encodes a document as four types of graphics
rendering instructions: (1) control instructions produce
no output; (2) text instructions render glyphs of sym-
bols; (3) graphics instructions render line art; (4) im-
age instructions map bitmapped images [6]. It is there-
fore possible to apply directly the methods developed
for hard-copy table recognition, but this requires error-
prone image processing and OCR, the results of which
are already explicitly and unambiguously provided in the
PDF representation of computer-generated documents.

The AIDAS project converts industrial technical man-
uals into an indexed database of training material. The
manuals are annotated according to a domain ontology.
An important step is the extraction of logical structure
from PDF files. This is accomplished by assigning logical
functions (section header, text paragraph) to each lay-
out object and refining the assignment as more evidence
(bullets, boldface) becomes available. A shallow gram-
mar is implemented for recognizing each function: tables
are recognized as a proximate set of “floating” text [6].
The approach is based on the notion that layout objects
do not explicitly represent logical structure, but contain
cues about their role in the structure [82].

The goal of a project at Hewlett-Packard Laborato-
ries is to reuse the layouts of existing PDF documents as
templates for creating new pages. This necessitates the
identification of logical components and the extraction
of the content of each component. The procedure first
separates into text, image, and vector graphics layers.
Compound objects are reduced to simple objects. Each
component block is represented as a polygonal outline,
a set of style attributes, and content. Text word, line,
and segment (paragraph block) analysis is performed on
the text layer, taking into account style attributes such
as type size and italics. The contents are transformed
to XML format. Bitmap analysis of the graphics layer
was, perhaps surprisingly, found easier than performing
segmentation following drawing paths. The segmented
graphic objects are eventually converted to SVG format.
Based on the analysis of the 18 page-segmentation er-
rors that arose in processing 200 test pages, the devel-
opment of specific table and map recognition modules is
suggested to reduce errors further. It is clear that the
combination of the current text layer and vector graph-
ics layer analysis provides the necessary foundations [16,
17].

Among references that address electronic tables are
[26,48,71,73].

5.2 Tables presented on paper

Paper tables are usually typeset, typewritten, or computer-
generated. In principle, they can also be hand-printed or

10 David W. Embley et al.: Table Processing Paradigms: A Research Survey

drafted (like telephone-company drawings [7,10,8,9,11,
15,19], and the header-blocks of old engineering draw-
ings), but we deem such hand-drawn tables as more akin
to forms and exclude them from consideration here.

Paper tables are converted to digital form by optical
scanning. Printed tables are typically scanned at sam-
pling rates of 200 to 600 dpi, but for some applications
facsimile scans (100 x 200 dpi) may be important. High-
speed duplex scanners have a throughput of 100 pages
per minute at 300 dpi and 24-bit color depth. Bilevel
scanners, which are suitable for most tables, are even
faster.

Copying and scanning may introduce noise and skew.
Both of these are more effectively corrected on a gray-
level representation of the page. Image-reparation soft-
ware is available from many vendors, including Lead
Technologies, Mitek, Visual Image, Cardiff, and Captiva.
The majority of the published work on table processing
deals with the extraction of structure from scanned pa-
per tables [1,10,15,32,39,50,60,87,93,98].

5.3 Table detection

Conceptually, table processing can be broken into two
logical steps: table detection and table recognition. Much
existing work on tables described in the literature ad-
dresses the latter step and assumes that the table has
already been identified and segmented out from the in-
put (or that identifying the table is trivial — e.g., the
whole document is the table). While this is, in fact, the
focus of our survey, we digress briefly to consider the
table detection problem.

Most prior research on the problem of table detection
has concentrated on detecting tables in scanned images,
and the vast majority depends on the presence of at least
some ruling lines (e.g., [60]). Hirayama [39] uses ruling
lines as initial evidence of a table or figure and then
further refines this decision to distinguish tables from
figures by a measure based on such features as the pres-
ence of characters. There is, of course, no guarantee that
such lines will be present in printed tables. Notable ex-
ceptions to this assumption include work by Rahgozar
and Cooperman [74] where a system based on graph-
rewriting is described and work done by Shamalian et
al. [80] in which a system based on predefined layout
structures in given.

There is much less prior art in the case of symbolic ta-
bles, though they are becoming increasingly important.
As noted earlier, these may originate either in ASCII
form (e.g., as part of an e-mail message), or as the result
of saving a “richer” document (e.g., an HTML page) in
“text-only” format. They may also be encoded in a page-
descriptor language such as PDF or PostScript, or in an
electronic file format such as the one used by Microsoft
Word. More often than not, ASCII tables contain no rul-
ing lines whatsoever, depending only on the 2-D layout
of the cell contents to convey the table’s structure. Lit-
tle of the past research on printed tables is applicable in
such cases.

Hu et al. [42] describe a technique for detecting tables
that does not rely on ruling lines and has the desirable
property that an identical high-level approach can be
applied to tables expressed as ASCII text (or any other
symbolic format) and those in image form. This general
framework is based on computing an optimal partition-
ing of a page column into some number of tables. A dy-
namic programming algorithm is presented to solve the
resulting optimization problem.

Three different heuristics to enable a production sys-
tem to detect tables in incoming documents are discussed
by Klein et al. [57]. The first, based on searching OCR
results for predefined table headers, was found to be too
susceptible to a variety of real-world complications and
hence unacceptable from a user standpoint. More sophis-
ticated techniques based on detecting column structure
and inter-textline similarities proved to be more robust.

Lastly, in a recent paper, Pinto et al. describe an ap-
proach for locating and extracting tables based on con-
ditional random fields [72]. Applied to plain-text govern-
ment statistical reports, they report a detection accuracy
of 92%.

5.4 Simplifying assumptions

We note that in order to focus on a core set of issues,
we have been forced to omit numerous important prob-
lems relating to the processing of tables, including plau-
sible sources of tables, table similarity detection, and
human-machine interfaces (graphical and spoken) to tab-
ular data. For these, we refer the reader to the previously
mentioned surveys [62,63,97].

For the purposes of the present study, we exclude
from consideration the following concerns.

1. Information external to the table proper, including:
titles and captions; footnotes; relevant passages from
nearby narrative text; information from related ta-
bles; and domain-specific table conventions.

2. Tables outside our restrictive definition, including:
folded and nested tables; tables with spanning cells in
the table body; tables with both horizontal and ver-
tical text; tables with domain-specific symbols, for-
eign script, or out-of lexicon text; tables containing
graphics; skewed tables; and sparse tables.

3. Expandable (clickable) Web tables and Web tables

employing hypertext links (embedded URLs).

Multidimensional data arrays (D > 2).

Tables that may or may not be tables, including: ma-

trices; tables used for formatting text, equations, or

graphics; tables of contents; and artistic, multi-color,
and sloppy tables.

Bl

6 Table Processing Paradigms

Tables may be encoded in many different input formats.
However, in this section we take the view that a table is
a table if and only if it appears as such when presented
in its intended visual form to the end user. Hence, the

David W. Embley et al.: Table Processing Paradigms: A Research Survey 11

concept of a 2-D rendering is central to our discussion of
table processing paradigms.

On the one hand, renderings of tables encoded as
ASCII text are so self-evident that it is easy to forget
that they are still based on a set of underlying assump-
tions (e.g., what is connoted by a carriage return and,
in most cases, that the rendering will use a monospaced
font). While other encoding schemes such as PostScript
and HTML have the potential to be much more com-
plex, the simple fact is that such documents are ren-
dered all the time, and developing systems to perform
this function is not considered a particularly daunting
task. The former are known as PostScript interpreters
(e.g., Ghostscript), while the latter are referred to as
Web browsers (e.g., Mozilla).

Although we shall at times strive for maximum possi-
ble generality, from a pragmatic standpoint, the vast ma-
jority of table processing research to date has focused on
two specific classes of inputs. Tables encoded in ASCII
format are a canonical instance of rendering on a coarse
(i.e., character-level) grid, while scanned bitmap tables
are a canonical instance of rendering on a fine (i.e., pixel-
level) grid. Hence, these are the concrete examples we
turn to most frequently in the following exposition.

The first group of paradigms associates cell content
with row and column numbers. Logically, their output
is a list: (i,j) cell-content, etc. Top-down methods
recover the underlying grid structure, then find the con-
tent of each cell. Bottom-up methods first delimit cell
contents, then construct the grid.

The input to the second group of paradigms is the
above list. These paradigms associate cell contents with
row and/or column headers. If row and column headers
are absent, virtual headers are assigned. This requires
some renumbering. The most complex algorithms target
nested headers.

The third paradigm level extracts high-level (seman-
tic) information from the output of the earlier para-
digms, i.e., row and column numbered headers and cell
contents. Its output is suitable for downstream appli-
cations like SQL, PROLOG, XML or other logic-based
schemata. While this is of increasing interest, especially
arising out of the Semantic Web, there has been more
work on the earlier aspects.

6.1 Simple tables

In the simplest case, it is possible to determine the cell
structure of the table using purely geometric cues from
the 2-D rendering. If it is known that the maximum
intra-cell horizontal spacing is strictly less than the mini-
mum inter-column horizontal spacing, and that the max-
imum intra-cell vertical spacing is strictly less than the
minimum inter-row vertical spacing, the table can be
parsed into columns and rows by using these parameters
to determine whether a given “gap” represents a contin-
uation of the current cell or the start of a new cell.
Note that this paradigm can be implemented inde-
pendently of the input format of the table because it is
defined in terms of the intended 2-D rendering of the

tabular information. All we need is an understanding of
the way the file is to be rendered, a way to identify the
basic “unit” in the input under study (i.e., character
strings in the case of ASCII and connected components
in the case of bitmaps), and a way to measure distances
between these basic units.

This paradigm is too simple by itself to suffice for
many tables, but the notion of thresholds that allow
merging intra-cell constituents without merging the con-
tents of separate cells is subsumed in many of the para-
digms below.

In the ASCII domain, this corresponds to character
strings delimited by column-separators (e.g., consecu-
tive spaces) and row-separators (e.g., carriage returns).
For example, we might have the following input, where
spaces are indicated by a dash symbol, -, and carriage
returns are indicated by a new paragraph symbol, §:

LASTNAME----INITIAL----BIRTHDATE§Smith--

————— J-————-—---12/3/1988¢Barr-————-—-K-
————————— 25/5/19759

which would be rendered (on a coarse grid) as:
LASTNAME INITIAL BIRTHDATE

Smith J 12/3/1988

Barr K 25/5/1975

On the other hand, in PostScript a similar table would
be represented thusly:

%PS-Adobe-3.0 EPSF-3.0
%/%BoundingBox: 0 78 163 106
%Page: 1 1

/Courier-New findfont 8 scalefont setfont
0 100 moveto (LASTNAME) show

60 100 moveto (INITIAL) show
120 100 moveto (BIRTHDATE) show
0 90 moveto (Smith) show

60 90 moveto (J) show

120 90 moveto (12/3/1988) show
0 80 moveto (Barr) show

60 80 moveto (K) show

120 80 moveto (25/5/1975) show
showpage

with a rendering (on a fine grid) like this:

LASTNAME I NI TI AL Bl RTHDATE
Smith J 12/ 3/ 1988
Barr K 25/ 5/ 1975

Lastly, in HTML, for an input like this:

<html><body><table cellpadding="5">
<tr><td>LASTNAME</td>
<td>INITIAL</td>
<td>BIRTHDATE</td></tr>
<tr><td>Smith</td>

<td>J</td>

<td>12/3/1988</td></tr>
<tr><td>Barr</td>

<td>K</td>

12 David W. Embley et al.: Table Processing Paradigms: A Research Survey

<td>25/5/1975</td></tr>
</table></body></html>

the rendering (on a fine grid) might appear as in Fig-
ure 4.

&) Netscape

. File Edit Mew Go Bookmarks Tools Window Help

0,0 0 0 FEsmm <D

. B EMal SAM 4 Home G Radio Metscape Cf Search | EBookn

i[&% File:,I’,I’,I’E:,I’IJDARTabIeSurvey,l’tablesample.html] B
LASTINAME INITIAL BIRTHDATE
Stnith T 121371988
Barr H 25051975
|n‘2 =] g &F £] | Done ==] [l % |

Fig. 4. Screen snapshot of the rendering of an HTML table.

Independent of how the table is stored or rendered,
we can capture the table in an ontology that formally de-
scribes the observable input. Figure 5 shows an ontology
describing the observable input for the table described
by the ASCII character sequence above. In Figure 5
the ASCII Character object set consists of all ASCII
characters. The Character Instance object set consists
of object identifiers, one for each instance of an ASCII
character in a table at a particular position. Thus, we
can capture each ASCII character (including each space
and carriage-return character) and its position in the se-
quence of ASCII characters representing the table.?

Although our example here is particularly simple, we
observe that it is possible to model ontologically all ob-
servable input features. Different features would be cap-
tured for alternative input media. For PostScript, for ex-
ample, the input ontology would capture bounding boxes
for strings along with string content, and for HTML, the
input ontology would capture the table-row and table-
data structure as provided by the < tr > and < td >
tags. For tables whose input media is an image, we can
model the input down to the pixel level if we wish. Our
ASCII example here only indicates the possibilities, and
we will not attempt in this paper to produce a full on-
tology of all features of interest. Our desire here is only
to indicate that it is possible to create such ontological
models as suggested in both [36] and [4].

In any case, independent of the form of the input
(whether it is a simple string of ASCII characters, a Post-
Script file, an HTML file, or an ontologically described

5 The ‘o’ at the base of the arrowhead connected to ASCIT
Character in Figure 5 denotes “optional participation.” The
meaning here is that although ASCII Character contains the
full set of ASCII characters, some of the characters may not
appear in the tables under consideration and thus their par-
ticipation in the relationship set between Character Instance
and ASCIIT Character is optional.

ASCII Character

e

:

Character
Instance

Table

I
.
U
2}
§".

Fig. 5. Ontology of observable features of an input ASCII
table.

sequence of ASCII character instances), the goal is to
obtain the following kind of output:

<cell row="1" col="1">LASTNAME</cell>
<cell row="1" col="2">INITIAL</cell>
<cell row="1" col="3">BIRTHDATE</cell>
<cell row="2" col="1">Smith</cell>
<cell row="2" col="2">J</cell>

<cell row="2" col="3">12/3/1988</cell>
<cell row="3" col="1">Barr</cell>
<cell row="3" col="2">K</cell>

<cell row="3" col="3">25/5/1975</cell>

which is a logical representation of the cell structure of
the table, with row and column indices assigned to each
cell.

Considering table processing from an ontological point
of view, we we can see this paradigm as generating ob-
ject and relationship sets in an intermediate, derived on-
tology that includes a derived object set Cell with as-
sociated Row and Column object sets. Figure 6 shows
an ontology with these derived object sets with their
derived relationships among each other and their rela-
tionship to Table. As part of the derivation, the para-
digm would have recognized character-instance blocks of
words, spaces, and carriage returns. An intermediate on-
tology can represent these derived object sets as they are
created as Figure 6 shows.

The paradigm for processing such tables, which cor-
responds to transforming a list to an array, is:

1. Render table on logical 2-D grid.

2. Parse 2-D representation. If necessary (i.e., if table
is in bitmap format), OCR cell contents. Call consec-
utive character strings cell “word blocks” or “phrase
blocks” or “cell contents.”

3. Advance column count for each column separator.

4. Advance row count for each row separator and reset
column count to 1.

In [75], table structure is viewed as a perfectly regular
isothetic tessellation of a rectangular region into virtual
cells, and a superimposed partitions of the virtual cells
with which cell content is associated. The authors pro-
pose to link together cells in the same row or column
with a text-block-adjacency graph reminiscent of Doc-
Strum [70].

A proposal to combine page analysis and table struc-
ture analysis by seeking regions with horizontally and
vertically aligned word bounding boxes is advanced in [89)].
No experimental results are presented because the test

David W. Embley et al.: Table Processing Paradigms: A Research Survey 13

ASCII Character

ey

b

Table | Character = Position
Instance oo :
s :
: Column ! Y
A | Character-
Cell |- Row {| Instance
Block
Carriage-
Word Blank Return
Block || Block Block

Fig. 6. Ontology with Row and Column of cells derived.

data had not yet been collected when the paper was writ-
ten.

6.2 Compound tables with blank lines

In this case, the input is character strings delimited by
column-separators and row-separators. Each cell may have
multiple components on the same or different logical text
lines. For example, in ASCII this might be:

LAST----INITIAL----BIRTH{NAME-------————

———-DATE]§Smith---J------——-- 12/3-19889¢
Barr----K-—-—-—-—--- 25/5-19759

which would be rendered (on a coarse grid) as:
LAST INITIAL BIRTH

NAME DATE

Smith J 12/3 1988

Barr K 25/5 1975

The paradigm in this case, which is top-down, is:

—

. Render table on logical 2-D grid.

2. Parse 2-D representation. If necessary (i.e., if table is
in bitmap format), OCR cell contents. Project char-
acters horizontally and vertically.

3. Make horizontal cuts at the end of groups of blank
text lines and vertical cuts at the end of space se-
quences.

4. Then consider any text within a cell delimited by
horizontal and vertical cuts as a phrase block.

5. Assign row and column numbers.

Among the earliest researchers to tackle table recog-
nition were Laurentini and Vida [60]. Their objective was
to transform tables found on scanned pages into elec-
tronic form, rather than extract the table structure for

further analysis. They find rulings by run-length analy-
sis, and then check if tight groups of character-sized con-
nected components fall within the resulting cells. Groups
with large gaps in their projection profiles are subdivided
by invisible virtual rulings.

A method based on a similar view of tables, using
projection profiles and aligned spaces between word bound-
ing boxes, was applied to convert Japanese tables into
HTML [86]. This paper has a very concise review of pre-
vious work, but only examples and no statistical results.

Another early paper by Chandran and Kasturi rec-
ognizes the lines in partially ruled tables as successions
of adjacent black runs. Missing demarcations are found
by an analysis of white streams. After a set of horizon-
tal and vertical demarcations are obtained, individual
blocks are labeled as heading, subheading, or entry. A
block is labeled as a heading if it has more than one
child, and as a subheading if it is the first block with
a single child, followed by a similar single-child pattern.
Only column headings are considered.

Abu Tarif finds and vectorizes any rulings, and adds
“virtual lines” that separate aligned components of text.
He converts the resulting “table skeleton” first into an
X-Y tree [68] and to Microsoft Excel spreadsheets using
Excel macros [1]. He did not OCR the text itself.

Cesarini et al. search Modified X-Y Tree descrip-
tors of documents to find tables consisting of clusters
of horizontal and vertical cuts [14]. The algorithm has
five thresholds, which are optimized to obtain the maxi-
mum value of a ” Table Location Index” on training doc-
uments. The method locates correctly over 58 of 75 ta-
bles in almost noise-free IEEE-PAMI pages, and 22 of 58
tables in U. Washington test images. They report that
this performance is far superior to that of two leading
commercial OCR systems that also find tables.

John Handley uses both rulings and word bounding
boxes to separate the cells and construct cell separators
for the table frame. His method handles large, complex,
fully-lined, semi-lined, and line-less cell tables with mul-
tiple lines of symbols per cell by iteratively identifying
all cell separators and cells. Although spanning header
cells are found, their relationship to the leaf cells is not
determined [38].

Hirayama proposes a sophisticated algorithm for seg-
menting a partially-ruled table into a lattice composed of
a grid of rectangles [39]. Lines are grouped when they in-
tersect, are close and nearly parallel, or if their endpoints
are close. Rulings are extended by virtual lines to the
outermost ruling. Eventually rectangles separated only
by virtual lines are joined. The resulting polygons form
cells only if they are rectangular, contain only character
strings, or are empty. Alignment is performed left-to-
right with a string-correction algorithm (the DP — dy-
namic programming — that appears in the title of the
paper) where the weights for substitution are the dif-
ferences between the baselines of two text strings. This
method can find the cell structure even when the cell con-
tents are of unequal size or when there are many empty
cells.

14 David W. Embley et al.: Table Processing Paradigms: A Research Survey

6.3 Compound tables without blank lines

Here we have no guarantee that there is vertical sepa-
ration between logically distinct rows in the table. For
example, input in the ASCII case might consist of char-
acter strings delimited by column-separators and row-
separators. Each cell may have multiple word blocks on
the same or different text lines. The contents of cells
overlap both horizontally and vertically.

LAST--INITIAL-BIRTH{NAME--——--———-- DATEYS
mith-J---————- 12/3-1988¢Barr--K---——---- 25
/5-19759

which would be rendered (on a coarse grid) as:

LAST INITIAL BIRTH

NAME DATE
Smith J 12/3 1988
Barr K 25/5 1975

Unlike Paradigm 2, there are no blank lines, so we
cannot find the horizontal separators directly. The par-
adigm here combines top-down and bottom-up process-
ing:

1. Render table on logical 2-D grid.

2. Parse 2-D representation. If necessary (i.e., if table is
in bitmap format), OCR cell contents. Work bottom
up by grouping horizontally and vertically adjacent
word blocks by some linguistic association measure
(cohesion).

(a) Association may be based on language models,
typeface and size, indentation.

(b) Language model includes conventions for dates,
currencies and prices, telephone numbers, units,
etc.

Here “LAST” and “NAME” go together, as do “BIRTH”

and “DATE,” and perhaps “12/3” and “1988.”

3. Group word blocks that have high association (or co-
hesion) into phrase blocks.

4. Find and use bounding box of phrase blocks (cell
overlap) to construct grid. (Graph representation may
be appropriate.)

5. Finally assign row and column numbers to phrase
blocks.

A notation and an inference algorithm to identify
conceptual cell commonalities, such as “amount fields”
and “dates,” was developed by Bayer [12]. While the
work does not specifically address tables, it offers a tool-
box of syntactic, lexical and geometrical properties in a
manner suitable for a table ontology.

In the ASCII domain, Pyreddy and Croft report on a
table extraction and retrieval experiment involving 6, 509
tables from a corpus consisting of six years of text from
the Wall Street Journal [73]. This data, professionally
written and from a single source, is likely to be unrealis-
tically uniform, however. Pyreddy and Croft have elab-
orate heuristics to separate leaf cells from other table
content, but do not differentiate between table captions
and headings because they are used in a similar way in
their information retrieval system.

Peterman et al. consider a table a collection of five
types of cells: data, vertical indices, horizontal indices,
title, and footnotes. They present a detailed analysis of
“table topology,” i.e., the conventions governing the lay-
out of cells, and of the placement of data within the cells.
The contents of each cell are analyzed by string matching
to discover cells with similar letter syntax. The resulting
rules for determining the “reading order” of the table are
embodied in a PERL script. They present experimental
results on a heterogeneous corpus of 100 electronic ta-
bles that they suggest mimic the results of processing
typeset paper tables with 99% accurate OCR. It is clear
that even aside from possible OCR and image process-
ing errors, manual editing would be required for most
applications [71].

Building on extensive previous work, Rus and Sub-
ramanian offer an interactive method of building mod-
els consisting of modular interactive agents for informa-
tion access and capture in distributed databases [77].
They give examples of structure detectors and segmenta-
tion modules for both paper and electronic tables. These
modules subdivide documents according to prevalent white
spaces and match table rows by syntactic string match-
ing. In an interesting digression, they predict the proba-
bility of incidental white streams from word length statis-
tics.

In a series of papers [42,44,41], Hu et al. describe
a medium-independent approach to table detection and
structure recognition based on a dynamic programming
algorithm that computes the optimal partitioning of the
input into some number of tables, uses hierarchical clus-
tering to determine the column structure, and then ap-
plies heuristics to determine table headers and row seg-
mentation. They also present evaluation measures for
quantifying the performance of such algorithms [45]. One
targeted application is automatically reformulating ta-
bles found in email for user access over the telephone [43].

6.4 Tables with rules

Previously, we considered the table cell contents to be
delimited by white space. Now we turn to the scenario
where cells are delimited by ruling lines. Such situations
are more likely to arise in the case of scanned tables, so
our examples will now refer to that mode of input.

The input, for example, might be a 300 dpi scanned
bitmap of a ruled table:

LAST INITIAL BIRTH
NAME DATE
Smith J 12/3 1988
Barr K 25/5 1975

The paradigm in this case is:

1. Process image to find and assemble line segments to
determine frame of this table.

David W. Embley et al.: Table Processing Paradigms: A Research Survey 15

2. If necessary (i.e., if table is in bitmap format), OCR
cell contents.
3. Use frame for row and column numbering.

Order of line finding and OCR, if it is necessary, may be
interchanged.

Image processing techniques for the extraction of line
segments include the Hough Transform [87], thinning,
vectorization [1] and projection profiles [50]. Turolla et
al. succeed in detecting 95% of 11,513 lines in 114 ta-
bles. They located cell entries of fully boxed tables by
finding the minimal cycle of the graph corresponding to
the frame. The lines are found using the Hough Trans-
form. The system was developed primarily for French
tax forms.

Ttonori combines textblock information with ruled
lines [50]. He expands the text bounding boxes until they
meet either rulings or other text. Then he aligns cell
boundaries in partially ruled tables with projection pro-
files. The method is applied to tables scanned at 400 dpi.
The method attempts to extract spanning vertical and
horizontal header cells, but sometimes fails on multiline
header cells because of inaccurate local textblock extrac-
tion.

Box-driven reasoning is proposed in [40] to mitigate
content-separator overlaps. Instead of seeking the inter-
section of horizontal and vertical lines, inner (white) and
outer (black) bounding boxes constitute the lowest-level
structure analyzed. The proposed underlying model is
described only as follows: “A table-form document is a
type of form composed of strings and cells made from
vertical and horizontal lines.” The system was tried only
on 10 fairly complex forms, and only the timing results
are given in detail.

The primary goal of this research was the recovery of
cell structure from fully lined but highly degraded tables
with broken rulings and overlapping cell contents [40].
The main contributions are the use of fine and coarse
scans, and a separate set of bounding boxes in both for
white spaces and for foreground connected components.
The boxes in the coarse and fine images are reconciled
according to the expected grid layout, and converted into
a cell structure that corresponds to an idealized version
of the scanned table.

T-Recs (Table REcognition System), an elaborate
program for the structural analysis of ASCII tables based
on bottom-up clustering of words, is described in [53].
The method works on both electronic and paper ta-
bles, starting with word bounding boxes. It can handle
very narrow gaps, misaligned cells, and cells that span
more than one printed line. It ignores ruling lines com-
pletely because it was designed for blocked text struc-
tures, not only regular tables. A more flexible approach,
T-Recs++, that can detect and analyze less regular ta-
bles as well as business letters, was subsequently re-
ported [52].

6.5 Tables with simple headers

The input to this stage of processing is the output from
the previous paradigms, 4.e., phrase blocks with row and

column numbers. For the example we have been using
thus far, the output from the previous stage might be:

<cell row="1" col="1">LAST NAME</cell>
<cell row="1" col="2">INITIAL</cell>
<cell row="1" col="3">BIRTH DATE</cell>
<cell row="2" col="1">Smith</cell>
<cell row="2" col="2">J</cell>

<cell row="2" col="3">12/3 1988</cell>
<cell row="3" col="1">Barr</cell>

<cell row="3" col="2">K</cell>

<cell row="3" col="3">25/5 1975</cell>

The output from this stage should be:

<colhead col="1">LAST NAME</colhead>
<colhead col="2">INITIAL</colhead>
<colhead col="3">BIRTH DATE</colhead>
<cell row="1" col="1">Smith</cell>
<cell row="1" col="2">J</cell>

<cell row="1" col="3">12/3 1988</cell>
<cell row="2" col="1">Barr</cell>
<cell row="2" col="2">K</cell>

<cell row="2" col="3">25/5 1975</cell>

The paradigm (recover header-cell relations) is:

1. Determine whether rows or columns or both are ho-
mogeneous (using language model, typeface/size, spac-
ing).

2. If a row or column is homogeneous, it may have a
header.

(a) Determine if top/leftmost cell is distinguished from
others (using language model, typeface/size, spac-
ing, rule if present)

(b) If yes, call this top/leftmost phrase block verti-
cal/horizontal header.

(¢) If not, add virtual /row column header, and assign
unique constants as headers, and renumber.

Seen ontologically, we can consider the input for this
paradigm as the derived ontology in Figure 6. Using al-
gorithms to derive headers, produces the ontology in Fig-
ure 7, where the only change to the diagram in Figure 6
is the object set Column Header, which marks certain
cells as header cells. From this information it should be
clear that we can derive the label-value pairs needed for
the output ontology in Figure 1.

Rahgozar applies rewriting rules in a graph language
to parse a table. The sequence of productions reproduces
the table structure of rows and columns [74].

6.6 Tables with nested headers

The input in this case is the intermediate output of Para-
digm 6.3: phrase blocks and phrase block bounding boxes
that do not constitute a uniform grid. For example:

EMPLOYEE PENSION STATUS
LAST NAME 1INITIAL BIRTH DATE
Smith J 12/3 1988
Barr K 25/5 1975

16 David W. Embley et al.: Table Processing Paradigms: A Research Survey

ASCII Character

e

:

Table |-= Character L= Position
Instance o '
“ P H
: Column ! Y
/7 Character-
Cell Rowi Instance
Block
Carriage-
Column Word Blank Return
Header Block || Block Block

Fig. 7. Ontology with Column Header derived.

The output in this case should be:

<colhead col="1">EMPLOYEE LAST NAME</colhead>

<colhead col="2">EMPLOYEE INITIAL</colhead>

<colhead col="3">PENSION STATUS BIRTH DATE
</colhead>

<cell row="1" col="1">Smith</cell>

<cell row="1" col="2">J</cell>

<cell row="1" col="3">12/3 1988</cell>

<cell row="2" col="1">Barr</cell>

<cell row="2" col="2">K</cell>

<cell row="2" col="3">25/5 1975</cell>

The paradigm is:

1. Determine top/leftmost spanning cells (using language
model, typeface/size, spacing).

2. Create virtual cells by subdividing spanning cells.

3. Determine whether elements of next row or column
distinguished from rest of row/column.

4. If yes, distribute (inverse of “factoring”) contents of
spanning cells over next row/column. Rename span-
ning headers accordingly.

5. If no, create virtual row/column headers with unique
constant names and rename spanning headers.

This paradigm may become immensely complex with
multiply nested row and column headers. The paradigm
may also include analysis of stub (top-left cell), which is
often the header for the row headers.

Formal paradigms for describing the structure of ta-
bles are the Table Syntax [32,58], the Structure Descrip-
tion Tree [93], and the Cohesion Domain Template [48].
All three model only local horizontal and vertical adja-
cency relationships between cells. They aim at finding
an appropriate tiling of the table. The foundations for a
more sophisticated scheme are laid in [46].

Known (model-based) domain dependency relation-
ships between cells can be exploited for validating an
interpretation. Some examples are given in [93].

In a series of papers [31-33], Green and Krishnamoor-
thy apply a compiler design approach to parsing scanned
ruled tables. The analysis consists of lexical, syntactic
and semantic steps starting at the pixel level and ending
up with an EXCEL-like cell enumeration scheme suit-
able for multiple levels of spanning headers. Although
the method is quite general, a model must be defined for
every new family of tables.

Toyohide Watanabe and his colleagues [64,92,91,90,
93] aim at a complete description of the various types
of information necessary to interpret a ruled scanned ta-
ble. A training set of diverse tables is used to populate
a classification tree, and each node of the classification
tree contains information, in the form of a Structure De-
scription Tree (SDT), to interpret a specific family of ta-
bles. In the operational phase, unrecognized documents
are added to the classification tree, and a new STD is
created for them.

The SDT represents generalized composition rules for
horizontally and vertically repeated structures. It is both
a logical layout representation and a syntactic descrip-
tion. Single and multiple horizontal and vertical loca-
tion dependence relations are defined. These relations
allow the analysis of rectangular substructures (called
“structure fragments”) of cells with spanning cells (usu-
ally headers) to the left or above related to content cells
below and to the right. The semantic properties of indi-
vidual table entries (city, zip-code) are expressed as item
frames. Item fields may be name fields or data fields. The
authors view the SDT as 2-D information, item sequence
rules as 1-D, and a pattern dictionary as 0-D.

The image-processing components (for scanned ta-
bles) include extraction of horizontal and vertical line
segments and corners. Image processing errors may be
recovered in the course of subsequent analysis. The final
output, aside from the meta-information used to process
the tables, is the grid outlay and a set of interpreted
name and data fields. Recognition of the table type as-
sumes that the relationship between these fields is al-
ready known, hence high-level interpretation is moot.

Konstantin Zuyev converts scanned ruled tables into
a grid structure by finding horizontal and vertical “split
points” using connected components, projection profiles,
and gap thresholds [98]. The method was developed for
a multilingual FineReader OCR product. He also sug-
gests using a high-level declarative definition of possible
table layouts in the form of a grammar, with the ex-
tracted table grid and its cells as the terminal symbols.
Heuristics are provided for common layouts of simple
and compound (header) cells, where allowable layouts
are specified by a “style” variable. The examples in the
paper show successful segmentation of quite complex and
dense tables.

6.7 Nested tables with row and column headers

Table 4 shows a table with with nested headers for both
rows and columns. The spanning header for the rows,

David W. Embley et al.: Table Processing Paradigms: A Research Survey 17

which is Char. in Table 4, is in the stub of the table.’ In
general, a table with row headers may have none, one, or
several spanning headers. When there are several, they
typically appear to the left of the row labels in spanning
boxes.

Table 4. ASCII Code for capital letters.

Binary
Char. || Zone Numeric | Hex
A 1010 0001 Al
B 0010 A2
C 0011 A3
D 0100 A4
E 0101 A5
F 0110 A6
G 0111 AT
H 1000 A8
I 1001 A9
J 1010 AA
K 1011 AB
L 1100 AC
M 1101 AD
N 1110 AE
O 1111 AF
P 1011 0000 B0
Q 0001 B1
R 0010 B2
S 0011 B3
T 0100 B4
U 0101 B5
A% 0110 B6
A% 0111 B7
X 1000 B8
Y 1001 B9
Z 1010 BA

Since Table 4 is a table with rules, the input for this
example is the output of Paradigm 6.4. Since there is
a row spanning header, we should distribute it over the
rows in the same way we distribute column spanning
headers over columns as explained in Paradigm 6.6. The
output in this case should be:

<rowhead row="1">Char. A</rowhead>
<rowhead row="2">Char. B</rowhead>

<colhead col="1">Binary Zone</colhead>
<colhead col="2">Binary Numeric</colhead>
<colhead col="3">Hex</colhead>

<cell row="1" col="1">1010</cell>

<cell row="1" col="2">0001</cell>

<cell row="1" col="3">A1</cell>

<cell row="2" col="1"></cell>

<cell row="2" col="2">0010</cell>

<cell row="2" col="3">A2</cell>

6 Note that it is sometimes ambiguous even to a trained
human eye whether the stub is a spanning header for a col-
umn of row labels or a simple header for a column of values.
Depending on the objectives for table processing, this may
or may not matter.

The paradigm is a combination of Paradigm 6.6 along
with a similar paradigm that produces row headers.

6.8 N-dimensional tables

Table 4 is a 2-dimensional table; Table 3 is a 3-dimen-
sional table. In principle we can have any number of
dimensions, although higher dimensions are not typi-
cal because their layout becomes increasingly complex.
Higher dimension tables, for example, may be recursively
nested, broken into labeled groups of tables, or succes-
sively linked through hypertext in cells of HTML tables.

Paradigms to recognize and process high-dimensional
tables generalize Paradigm 6.7, which in turn generalizes
Paradigm 6.6. To generalize the output, we can use di-
mensions rather than rows and columns. The output for
Table 3, for example, would be:

<header dimension="1", indexNr="1">
Nucleotide First Position U</header>
<header dimension="1", indexNr="2">
Nucleotide First Position C</header>
<header dimension="1", indexNr="3">
Nucleotide First Position A</header>
<header dimension="1", indexNr="4">
Nucleotide First Position G</header>
<header dimension="2", indexNr="1">
Nucleotide Second Position U</header>

<header dimension="3", indexNr="1">
Nucleotide Third Position U</header>
<cell
dimension="1" indexNr="1"
dimension="2" indexNr="1"
dimension="3" indexNr="1">Phe</cell>
<cell
dimension="1" indexNr="1"
dimension="2" indexNr="1"
dimension="3" indexNr="2">Phe</cell>
<cell
dimension="1" indexNr="4"

dimension="2" indexNr="4"
dimension="3" indexNr="4">Gly</cell>

We are not aware of any work in this area and leave
it as a future challenge for the community.

7 Conclusions

We have identified a number of potential applications for
table processing and the corresponding research prob-
lems for which little work has been reported thus far.
We have also expressed our opinions of the relative diffi-
culties of the tasks involved. To recapitulate, the appli-
cations are:

18 David W. Embley et al.: Table Processing Paradigms: A Research Survey

Large-volume, homogeneous table conversion.
Large-volume, mixed table conversion.
Individual database creation.

Tabular browsing.

Audio access to tables.

Table manipulation.

Table modification for display.

N otE W=

An obvious next step would be to analyze these applica-
tions further to determine their commonalities and dif-
ferences.

The new research problems appear to us to be:

Query mechanisms for freeform electronic tables.

Audio navigation and access to a gridded table.

Subdividing a table into a set of equivalent tables.

Spotting tables in electronic mail.

Clustering tables into similarity groups.

Converting a paper or electronic table into an ab-

stract representation.

7. Effects of “noise” in tables and correction of errors
introduced in processing.

8. Performance evaluation of both table conversion and

table query.

O U N

The ways in which the applications and problems inter-
relate are depicted in Table 5. Unless we make headway
on performance evaluation, including acquisition of sta-
tistically adequate test material, it will be difficult to
evaluate progress on any of the other tasks.

Most work to date is based on table geometry, i.e.,
processing the graphic elements of the table. Very little
has been reported on combining such image processing
with the results of character recognition of the cell con-
tents. Although the logical interpretation of paper and
electronic tables is similar, the overhead of image pro-
cessing and OCR makes the former a much more difficult
task. Current OCR systems often de-columnize tables
because superficially they look like multicolumn text. No
test on a large, heterogeneous corpus has been reported,
and few researchers have considered the need to provide
a mechanism for the correction of residual errors from
automated processing.

More recently, the trend has shifted to the appar-
ently easier problem of electronic table conversion. Sev-
eral commercial organizations advertise their capability
of converting electronic tables to various forms, including
spreadsheets. Some advertise conversion of tables pre-
sented in raster image form.

Simple electronic tables, whether ASCII, PDF, RTF,
SGML, HTML, XML, I¥TgX, Tbl, or other, can prob-
ably be converted with moderate effort to an abstract
form with over 90% accuracy. Spotting large tables in
electronic documents is relatively easy, but delineating
them precisely is more difficult. A limit on achievable
accuracy is imposed by the ambiguity inherent in these
tasks.

We have offered a formal definition of table under-
standing in terms of relational tables and table ontolo-
gies. The derivation of information from a table could
be accomplished by converting the table to a relational
database or equivalent and formulating queries in SQL.

Alternatively, queries can be answered by direct interac-
tive access to a preprocessed table. Such preprocessing
need not be much more elaborate than division into rows
and columns.

However, tables do not generally contain sufficient in-
formation for conversion into a database, although they
can be converted into an abstract table or spreadsheet.
To add the necessary semantics, a model of the table
is required. The model can be derived from an exist-
ing database corresponding to similar tables, or it can
be provided by the user/operator. The user can either
provide the model explicitly, or implicitly by correct-
ing errors. Except for large volumes of similar tables, it
appears sensible to take advantage of the user’s under-
standing of the context of the table; endowing a table-
understanding system with such context is difficult.

The economics of table processing is another impor-
tant point that has often been ignored. Clearly, an invest-
ment in table processing must bring with it benefits that
exceed the expenses involved. If it is always easier to re-
cover the desired information through some other means
(by browsing, say, or via a simple keyword query), then
table processing serves no purpose. The formulation of
such a model would be invaluable, and may very well
provide insight into where we should apply our efforts to
obtain the greatest possible return.

The vast majority of papers published to date have
concentrated either on the problems associated with low-
level analysis of printed tables, or on guidelines for ta-
ble presentation, with comparatively little work on the
topic of making tabular information useful (other than
for highly specialized applications). What has changed
to make this an interesting question to consider? The
unprecedented explosion in the amount of information
people are confronted with each day. Whereas large-scale
databases were once the province of a select few, nowa-
days anyone with Internet access and an e-mail account
is inundated with vast quantities of unstructured (or at
best semi-structured) data. Automated table processing
presents one promising way of recovering useful, famil-
iar structure making it possible to realize more of the
benefits of universal data access.

Industrial applications of table processing technology
also play a role in moving the state of the art forward.
Such solutions have the potential to give data processing
shops an advantage in throughput. These businesses ser-
vice, for example, medical insurance companies (where
tabulated claim data is verified) and telephone compa-
nies (where competitive analysis is performed on cus-
tomer billing statements). Business intelligence and fi-
nancial services companies have an interest in enhancing
reaction speeds to dense information such as SEC fil-
ings, news wire items (which often contain tabular data)
and other tabulated financial data. In certain domains,
archival tasks are wholly enabled by table processing sys-
tems, as are data conversion and storage solutions (e.g.,
conversion to XML).

It may be time for table processing research to make
the transition from pixel and cell level analysis to table
interpretation in a multi-document context.

David W. Embley et al.: Table Processing Paradigms: A Research Survey 19

Table 5. Interrelationships between applications and research problems in table processing.

Performance evaluation

Overcoming recognition errors

Conversion to abstract form

Table clustering

Table spotting

Table subdivision

Audio navigation

Query mechanisms

Large-volume, homogeneous conversion

Large-volume, mixed conversion

Individual database creation

Tabular browsing

Audio access to tables

Table manipulation

Table modification for display

References

1. A. Abu-Tarif. Table processing and table understand-
ing. Master’s thesis, Rensselaer Polytechnic Institute,
May 1998.

2. H. Alam and F. Rahman. Web document manipulation
for small screen devices: A review. In Proceedings of the
Second International Workshop on Web Document Anal-
ysis (WDA2003), 2003.
http://www.csc.liv.ac.uk/“wda2003 /Papers/Section_II/
Paper_8.pdf.

3. H. Alam, F. Rahman, and Y. Tarnikova. When is a list is
a list?: Web page re-authoring for small display devices.
In Proceedings of the Twelfth International World Wide
Web Conference, Budapest, Hungary, May 2003.
http://www2003.0rg/cdrom/papers/poster /p054/
pH4-Alam.htm.

4. S. Alrashed and W. A. Gray. Detection approaches for
table semantics in text. In D. Lopresti, J. Hu, and
R. Kashi, editors, Document Analysis Systems V, vol-
ume 2423 of Lecture Notes in Computer Science, pages
287-290. Springer-Verlag, Berlin, Germany, 2002.

5. A. Amano and N. Asada. Graph grammar based analy-
sis system of complex table form document. In Proceed-
ings of the Seventh International Conference on Docu-
ment Analysis and Recognition, 2003.

6. A. Anjewierden. AIDAS: Incremental logical structure
discovery in PDF documents. In Proceedings of the
Sizth International Conference on Document Analysis
and Recognition, pages 374-378, Seattle, WA, Septem-
ber 2001.

7. J. F. Arias, S. Balasubramanian, A. Prasad, R. Kasturi,
and A. Chhabra. Information extraction from telephone
company drawings. In Proceedings of the Conference on
Computer Vision and Pattern Recognition, pages 729—
732, Seattle, Washington, June 1994.

8. J. F. Arias, A. Chhabra, and V. Misra. Efficient interpre-
tation of tabular documents. In Proceedings of the Inter-
national Conference on Pattern Recognition (ICPR’96),
volume III, pages 681-685, Vienna, Austria, August
1996.

9. J. F. Arias, A. Chhabra, and V. Misra. Interpreting and
representing tabular documents. In Proceedings of the

10.

11.

12.

13.

14.

15.

16.

17.

Conference on Computer Vision and Pattern Recogni-
tion, pages 600-605, San Francisco, CA, June 1996.

J. F. Arias and R. Kasturi. Efficient techniques for line
drawing interpretation and their application to telephone
company drawings. Technical Report CSE TR CSE-95-
020, Penn State University, August 1995.

S. Balasubramanian, S. Chandran, J. F. Arias, R. Kas-
turi, and A. Chhabra. Information extraction from tab-
ular drawings. In Proceedings of Document Recognition I
(IS&T/SPIE Electronic Imaging’94), volume 2181, pages
152-163, San Jose, CA, June 1994.

T. A. Bayer. Understanding structured text documents
by a model based document analysis system. In Proceed-
ings of the Second International Conference on Docu-
ment Analysis and Recognition (ICDAR’93), pages 448
453, Tsukuba Science City, Japan, October 1993.

L. Bing, J. Zao, and X. Hong. New method for log-
ical structure extraction of form document image. In
Proceedings of Document Recognition and Retrieval VI
(IS8T /SPIE Electronic Imaging’99), volume 3651, pages
183-193, San Jose, CA, January 1999.

F. Cesarini, S. Marinari, L. Sarti, and G. Soda. Trainin-
able table location in document images. In Proceedings
of the International Conference on Pattern Recognition,
volume ITI, pages 236-240, 2002.

S. Chandran and R. Kasturi. Structural recognition of
tabulated data. In Proceedings of the Second Interna-
tional Conference on Document Analysis and Recogni-
tion (ICDAR’93), pages 516-519, Tsukuba Science City,
Japan, October 1993.

H. Chao. Background pattern recognition in multi-page
PDF document. In Proceedings of the Third International
Workshop on Document Layout Interpretations and its
Applications (DLIA2008), pages 41-45, 2003.
http://www.science.uva.nl/events/dlia2003 /program/
41-46-chao.pdf.

H. Chao and J. Fan. Layout and content extraction for
PDF documents. In S. Marinai and A. Dengel, editors,
Document Analysis Systems VI, volume 3163 of Lecture
Notes in Computer Science, pages 213-224. Springer-
Verlag, Berlin, Germany, 2004.

20

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

David W. Embley et al.: Table Processing Paradigms: A Research Survey

P. Chen. The entity-relationship model—toward a uni-
fied view of data. ACM Transactions on Database Sys-
tems, 1(1), March 1976.

A. K. Chhabra, V. Misra, and J. Arias. Detection of
horizontal lines in noisy run length encoded images: The
FAST method. In R. Kasturi and K. Tombre, editors,
Graphics Recognition — Methods and Applications, vol-
ume 1072 of Lecture Notes in Computer Science, pages
35—48. Springer-Verlag, Berlin, Germany, 1996.

R. Chiang, T. Barron, and V. Storey. Reverse engineering
of relational databases: Extraction of an eer model from
a relational database. Data and Knolwedge Engineering,
12(1):107-142, 1994.

E. Codd. A relational model for large shared data banks.
Communications of the ACM, 13(6):377-487, June 1970.
W. Cohen, M. Hurst, and L. S. Jensen. A flexible learn-
ing system for wrapping tables and lists in HTML doc-
uments. In Proceedings of the Eleventh International
World Wide Web Conference WWW-2002, 2002.

L. D. Corporation. Improv handbook, 1991.

B. Coiiasnon. DMOS: A generic document recognition
method, application to an automatic generator of musi-
cal scores, mathematical formulae and table structures
recognition systems. In Proceedings of the Sizth Inter-
national Conference on Document Analysis and Recogni-
tion, Seattle, WA, September 2001.

B. Cotiasnon, J. Camillerapp, and I. Leplumey. Mak-
ing handwritten archives documents accessible to public
with a generic system of document image analysis. In
Proceedings of the International Workshop on Document
Image Analysis for Libraries, pages 270-277, Palo Alto,
CA, January 2004.

S. Douglas, M. Hurst, and D. Quinn. Using natural lan-
guage processing for identifying and interpreting tables
in plain text. In Proceedings of the Symposium on Doc-
ument Analysis and Information Retrieval (SDAIR’95),
pages 535-545, Las Vegas, NV, April 1995.

D. Embley, B. Kurtz, and S. Woodfield. Object-oriented
Systems Analysis: A Model Driven Apprach. Yourdon
Press, 1992.

D. Embley, C. Tao, and S. Liddle. Automating the ex-
traction of data from HTML tables with unknown struc-
ture. Data & Knowledge Engineering, 2005. (in press).
P. Gray, S. Embury, W. Gray, and K. Hui. An agent-
based system for handling distributed design constraints.
In Proceedings of Agents’98, 1998.

E. A. Green. Ph.d. research, 1997.
http://tardis.union.edu/greene/research-dir/
research.html.

E. A. Green and M. Krishnamoorthy. Model-based anal-
ysis of printed tables. In Proceedings of the First Inter-
national Workshop on Graphics Recognition (GREC’95),
pages 234-242, PA, 1995.

E. A. Green and M. Krishnamoorthy. Model-based anal-
ysis of printed tables. In Proceedings of the Third Inter-
national Conference on Document Analysis and Recog-
nition (ICDAR’95), pages 214-217, Montréal, Canada,
August 1995.

E. A. Green and M. Krishnamoorthy. Recognition of
tables using table grammars. In Proceedings of the Sym-
posium on Document Analysis and Information Retrieval
(SDAIR’95), pages 261-277, Las Vegas, NV, April 1995.
T. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5:199-220, 1993.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

J. T. Guthrie, T. Britten, and K. G. Barker. Roles of
document structure, cognitive strategy, and awareness in
searching for information. International Reading Associ-
ation, 1991.

T. Haas. The development of a prototype knowledge-
based table-processing system. Master’s thesis, Brigham
Young University, Provo, Utah, April 1998.

J. C. Handley. Document recognition. In E. R.
Dougherty, editor, Electronic Imaging Technology, chap-
ter 8. SPIE — The International Society for Optical En-
gineering, 1999.

J. C. Handley. Table analysis for multiline cell identifi-
cation. In P. B. Kantor, D. P. Lopresti, and J. Zhou, edi-
tors, Proceedings of Document Recognition and Retrieval
VIII (IS&T/SPIE Electronic Imaging), volume 4307, San
Jose, CA, January 2001.

Y. Hirayama. A method for table structure analysis us-
ing DP matching. In Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition
(ICDAR’95), pages 583-586, Montréal, Canada, August
1995.

O. Hori and D. S. Doermann. Robust table-form struc-
ture analysis based on box-driven reasoning. In Proceed-
ings of the Third International Conference on Document
Analysis and Recognition (ICDAR’95), pages 218-221,
Montréal, Canada, August 1995.

J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wil-
fong. Why table ground-truthing is hard. In Proceed-
ings of the Sizth International Conference on Document
Analysis and Recognition, pages 129-133, Seattle, WA,
September 2001.

J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Medium-
independent table detection. In D. P. Lopresti and
J. Zhou, editors, Proceedings of Document Recognition
and Retrieval VII (IS&T/SPIE Electronic Imaging), vol-
ume 3967, pages 291-302, San Jose, CA, January 2000.

J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. A system
for understanding and reformulating tables. In Proceed-
ings of the Fourth IAPR International Workshop on Doc-
ument Analysis Systems, pages 361-372, Rio de Janeiro,
Brazil, December 2000.

J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table
structure recognition and its evaluation. In P. B. Kan-
tor, D. P. Lopresti, and J. Zhou, editors, Proceedings of
Document Recognition and Retrieval VIII (IS6T/SPIE
Electronic Imaging), volume 4307, pages 44-55, San Jose,
CA, January 2001.

J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Evaluating
the performance of table processing algorithms. Interna-
tional Journal on Document Analysis and Recognition,
4(3):140-153, March 2002.

M. Hurst. Layout and language: Beyond simple text for
information interaction — modelling the table. In Pro-
ceedings of the Second International Conference on Mul-
timodal Interfaces, Hong Kong, January 1999.

M. Hurst. The Interpretation of Tables in Texts. PhD
thesis, University of Edinburgh, 2000.

M. Hurst and S. Douglas. Layout and language: Prelim-
inary investigations in recognizing the structure of ta-
bles. In Proceedings of the International Conference on
Document Analysis and Recognition (ICDAR’97), pages
1043-1047, August 1997.

insiders — knowledge-management specialists, February
2005. http://www.insiders.de/.

David W. Embley et al.: Table Processing Paradigms: A Research Survey 21

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

K. Itonori. A table structure recongnition based on
textblock arrangement and ruled line position. In Pro-
ceedings of the Second International Conference on Docu-
ment Analysis and Recognition (ICDAR’93), pages 765—
768, Tsukuba Science City, Japan, October 1993.

T. Kieninger and A. Dengel. A paper-to-HTML table
converting system. In Proceedings of Document Analysis
Systems (DAS) 98, Nagano, Japan, November 1998.

T. Kieninger and A. Dengel. Applying the T-Recs table
recognition system to the business letter domain. In Pro-
ceedings of the Sizth International Conference on Docu-
ment Analysis and Recognition, Seattle, WA, September
2001.

T. G. Kieninger. Table structure recognition based on
robust block segmentation. In Proceedings of Document
Recognition V (IS&T/SPIE Electronic Imaging’98), vol-
ume 3305, pages 22-32, San Jose, CA, January 1998.

B. Klein, S. Agne, and A. D. Bagdanov. Understanding
document analysis and understanding (through model-
ing). In Proceedings of the Seventh International Con-
ference on Document Analysis and Recognition (IC-
DAR’08), pages 1218-1222, Edinburgh, Scotland, Au-
gust 2003.

B. Klein, S. Agne, and A. Dengel. Results of a study
on invoice-reading systems in Germany. In S. Marinai
and A. Dengel, editors, Document Analysis Systems VI,
volume 3163 of Lecture Notes in Computer Science, pages
451-462. Springer-Verlag, Berlin, Germany, 2004.

B. Klein and A. R. Dengel. Problem-adaptable document
analysis and understanding for high-volume applications.
International Journal on Document Analysis and Recog-
nition, 6(3):167-180, March 2004.

B. Klein, S. Gékkus, T. Kieninger, and A. Dengel. Three
approaches to “industrial” table spotting. In Proceed-
ings of the Sizth International Conference on Document
Analysis and Recognition, pages 513-517, Seattle, WA,
September 2001.

W. Kornfeld and J. Wattecamps. Automatically locating,
extracting and analyzing tabular data. In Proceedings of
the 21st International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages
347-348, Melbourne, Australia, August 1998.

L. Lamport. EBTgX: A Document Preparation System.
Addison-Wesley, Reading, MA, 1985.

A. Laurentini and P. Viada. Identifying and understand-
ing tabular material in compound documents. In Proceed-
ings of the Eleventh International Conference on Pattern
Recognition (ICPR’92), pages 405-409, The Hague, 1992.
M. Lesk. Tbl — a program to format tables. In UNIX
Programmer’s Manual, volume 2A. Bell Telephone Lab-
oratories, Murray Hill, NJ, 1979.

D. Lopresti and G. Nagy. Automated table processing:
An (opinionated) survey. In Proceedings of the Third
TAPR International Workshop on Graphics Recognition,
pages 109-134, Jaipur, India, September 1999.

D. Lopresti and G. Nagy. A tabular survey of auto-
mated table processing. In A. K. Chhabra and D. Dori,
editors, Graphics Recognition: Recent Advances, volume
1941 of Lecture Notes in Computer Science, pages 93—
120. Springer-Verlag, Berlin, Germany, 2000.

Q. Luo, T. Watanabe, Y. Yoshida, and Y. Inagaki.
Recognition of document structure on the basis of spatial
and geometric relationships between document items. In
Proceedings of MVA 90, pages 461-464, 1990.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

A. Maedche and S. Staab. Ontology learning for the
semantic web. IEEE Intelligent Systems, 2001.

D. Maier. The Theory of Relational Databases. Computer
Science Press, Inc., Rockville, Maryland, 1983.

G. Nagy. Twenty years of document image analysis in
PAMI. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(1):38-62, January 2000.

G. Nagy and S. Seth. Hierarchical representation of op-
tically scanned documents. In Proceedings the Interna-
tional Conference on Pattern Recognition (ICPR), pages
347-349, 1984.

H. Nielson and W. Barrett. Consensus-based table
form recognition. In Proceedings of the Seventh Inter-
national Conference on Document Analysis and Recogni-
tion, pages 906-910, August 2003.

L. O’Gorman. The document spectrum for structural
page layout analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(11):1162-1173,
November 1993.

C. Peterman, C. H. Chang, and H. Alam. A system
for table understanding. In Proceedings of the Sym-
posium on Document Image Understanding Technology
(SDIUT’97), pages 55—62, Annapolis, MD, April/May
1997.

D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Ta-
ble extraction using conditional random fields. In Pro-
ceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pages 235-242, 2003.

P. Pyreddy and W. B. Croft. TINTIN: A system for re-
trieval in text tables. Technical Report UM-CS-1997-002,
University of Massachusetts, Amherst, January 1997.
M. A. Rahgozar and R. Cooperman. A graph-based table
recognition system. In Proceedings of Document Recog-
nition III (IS&T/SPIE Electronic Imaging’96), volume
2660, pages 192-203, San Jose, CA, January 1996.

J. Ramel, M. Crucianu, N. Vincent, and C. Faure. De-
tection, extraction and representation of tables. In Pro-
ceedings of the Seventh International Conference on Doc-
ument Analysis and Recognition, 2003.

Recording for the Blind and Dyslexic, Princeton, NJ. The
1.7 Tag Set Usage Guide, 1994.

D. Rus and D. Subramanian. Customizing information
capture and access. ACM Transactions on Information
Systems, 15(1):67-101, 1997.

D. Rus and K. Summers. Using white space for auto-
mated document structureing. Technical Report TR94-
1452, Cornell University, Department of Computer Sci-
ence, July 1994.

ScanSoft OmniPage, February 2005.
http://www.scansoft.com/omnipage/.

J. H. Shamalian, H. S. Baird, and T. L. Wood. A retar-
getable table reader. In Proceedings of the International
Conference on Document Analysis and Recognition (IC-
DAR’97), pages 158-163, August 1997.

R. Sproat, J. Hu, and H. Chen. EMU: an e-mail pre-
processor for text-to-speech. In Proceedings of the IEEE
Workshop on Multimedia Signal Processing, pages 239—
244, Los Angeles, CA, December 1998.

K. Summers. Automatic Discovery of Logical Document
Structure. PhD thesis, Cornell University, August 1998.
TCG Informatik AG — Data capture at its best, February
2005. http://www.tcginf.ch.

22

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

David W. Embley et al.: Table Processing Paradigms: A Research Survey

Y. Tijerino, D. Embley, D. Lonsdale, and G. Nagy. To-
wards ontology generation from tables. World Wide Web
Journal, 2005. In press.

TREC Data — English Test Questions (Topics).
http://trec.nist.gov/data/testq_eng.html.

S. Tsuruoka, K. Takao, T. Tanaka, T. Yoshikawa, and
T. Shinogi. Region segmentation for table image with
unknown complex structure. In Proceedings of the
Sixth International Conference on Document Analysis
and Recognition, Seattle, WA, September 2001.

E. Turolla, Y. Belaid, and A. Belaid. Form item ex-
traction based on line searching. In R. Kasturi and
K. Tombre, editors, Graphics Recognition — Methods and
Applications, volume 1072 of Lecture Notes in Computer
Science, pages 69-79. Springer-Verlag, Berlin, Germany,
1996.

X. Wang. Tabular abstraction, editing, and formatting.
PhD thesis, University of Waterloo, 1996.

H. Wasserman, K. Yukawa, B. Sy, K.-L. Kwok, and
I. T. Phillips. A theoretical foundation and a method
for document table structure extraction and decomposi-
tion. In D. Lopresti, J. Hu, and R. Kashi, editors, Docu-
ment Analysis Systems V, volume 2423 of Lecture Notes
in Computer Science, pages 291-294. Springer-Verlag,
Berlin, Germany, 2002.

T. Watanabe and T. Fukumura. A framework for validat-
ing recognized results in understanding table-form docu-
ments. In Proceedings of the Third International Confer-
ence on Document Analysis and Recognition, pages 536—
539, 1995.

T. Watanabe, Q. Luo, and N. Sugie. Towards a prac-
tical document understanding of table-form documents:
Its framework and knowledge representation. In Pro-
ceedings of the Second International Conference on Doc-
ument Analysis and Recognition, pages 510-515, 1993.
T. Watanabe, H. Naruse, Q. Lou, and N. Sugie. Structure
analysis of table-form document on the basis of the recog-
nition of vertical and horizontal line segments. In Pro-
ceedings of the First International Conference on Docu-
ment Analysis and Recognition, pages 638-646, 1991.

T. Watanabe, Q. L. Quo, and N. Sugie. Layout recog-
nition of multi-kinds of table-form documents. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 17(4):432-445, 1995.

S. Whittaker and C. Sidner. Email overload: exploring
personal information management of email. In Proceed-
ings of the Conference on Human Factors in Comput-
ing Systems (CHI), pages 276-283, Vancouver, British
Columbia, Canada, April 1996.

P. Wright. A user-oriented approach to the design of ta-
bles and flowcharts. In D. H. Jonassen, editor, The Tech-
nology of Text. Educational Technology Publications,
1982.

XML Cities: XML Content for a New Era, February 2005.
http://www.xmlcities.com.

R. Zanibbi, D. Blostein, and J. R. Cordy. A survey of
table recognition: Models, observations, transformations,
and inferences. International Journal on Document Anal-
ysis and Recognition, 7(1):1-16, September 2004.

K. Zuyev. Table image segmentation. In Proceedings of
the International Conference on Document Analysis and
Recognition (ICDAR’97), pages 705—708, August 1997.

